• Users Online: 1961
  • Home
  • Print this page
  • Email this page

 Table of Contents  
Year : 2014  |  Volume : 9  |  Issue : 12  |  Page : 1183-1185

Neuregulin 1 isoforms could be an effective therapeutic candidate to promote peripheral nerve regeneration

1 Department of Clinical and Biological Sciences; Neuroscience Institute of Turin (NIT), University of Turin, Italy
2 Department of Clinical and Biological Sciences; Neuroscience Institute of the "Cavalieri Ottolenghi" Foundation (NICO), University of Turin, Italy
3 Department of Clinical and Biological Sciences; Neuroscience Institute of Turin (NIT); Neuroscience Institute of the "Cavalieri Ottolenghi" Foundation (NICO), University of Turin, Italy

Date of Acceptance16-May-2014
Date of Web Publication11-Jul-2014

Correspondence Address:
Giovanna Gambarotta
Dipartimento di Scienze Cliniche e Biologiche, Universitą di Torino, Ospedale San Luigi, Regione Gonzole 10, 10043 - Orbassano (TO)
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/1673-5374.135324

Rights and Permissions

How to cite this article:
Gambarotta G, Ronchi G, Geuna S, Perroteau I. Neuregulin 1 isoforms could be an effective therapeutic candidate to promote peripheral nerve regeneration. Neural Regen Res 2014;9:1183-5

How to cite this URL:
Gambarotta G, Ronchi G, Geuna S, Perroteau I. Neuregulin 1 isoforms could be an effective therapeutic candidate to promote peripheral nerve regeneration. Neural Regen Res [serial online] 2014 [cited 2020 Sep 27];9:1183-5. Available from: http://www.nrronline.org/text.asp?2014/9/12/1183/135324

Traumatic injuries of peripheral nerves represent common casualties and their social impact is considerably high. Although peripheral nerves retain a good regeneration potential, the clinical outcome after nerve lesion is far from being satisfactory and functional recovery is almost never complete, especially in the case of large nerve defects, that result in loss or diminished sensitivity and/or motor activity of the innervated target organs. Therefore, to improve the outcome after nerve damage, or in peripheral neuropathies, there is a need for further research in nerve repair and regeneration to identify factors that promote axonal regrowth, remyelination and target reinnervation.

Among the different factors involved in these processes (Taveggia et al., 2010; Pereira et al., 2012), stands out neuregulin 1 (NRG1), a factor which plays a role both in the myelination occurring during development (Lemke, 2006) and in the response to peripheral nerve injury (Syed and Kim, 2010; Fricker and Bennett, 2011).

NRG1 is a pleiotropic factor characterized by the existence of numerous isoforms arising from alternative splicing of exons that confer to the protein with deeply different characteristics (Falls, 2003; Mei and Xiong, 2008).

NRG1 can be produced as a secreted or as a transmembrane protein ready to interact with its receptor, or as a transmembrane pro-protein that needs a proteolytic cleavage to release a soluble fragment or to protrude its receptor binding domain in the extracellular environment ([Figure 1]). According to its structure, NRG1 signals in a paracrine, autocrine or juxtacrine manner; moreover, juxtacrine interactions can signal both in a forward and reverse manner due to the production of a fragment containing the intracellular domain (ICD, [Figure 1]B) that can translocate into the nucleus and influence gene transcription (Bao et al., 2003; Bao et al., 2004; Chen et al., 2010). NRG1 interacts directly with two of the four members of the tyrosine kinase receptor family ErbB: ErbB4, that signals as homo or heterodimer, and ErbB3, that forms a heterodimer with ErbB2.
Figure 1 Structure of soluble or transmembrane neuregulin 1 (NRG1) isoforms.
NRG1 isoforms are tissue-specifically expressed and are classified into types I-VI according to their N-terminus domain, and into types α/β, 1-4, a-c, according to their C-terminus domains, as previously shown (Falls, 2003; Mei and Xiong, 2008). To simplify, in this figure only soluble (type I-II) and transmembrane (type III) NRG1 isoform structures are shown, because type IV-VI role in the peripheral nerve is still not known.
All NRG1 isoforms contain an epidermal growth factor (EGF)-like domain (here in black). Panel A: Soluble NRG1 contain a type I or type II N-terminal domain, an immunoglobulin (Ig)-like domain and can be expressed as secreted proteins released in the extracellular environment (type β3) or as transmembrane pro-proteins susceptible to proteolytic shedding and consequent release of the soluble li­gand in the extracellular environment. Panel B: Transmembrane NRG1 are characterized by the presence of a type III N-terminal domain, containing a cystein rich domain (CRD) and can be expressed with the EGF-like domain ready to interact with receptors (type β3) or as transmembrane pro-protein that requires a proteolytic cleavage to expose the EGF-like domain towards receptors. These isoforms can be cleaved by either the α secretase TACE or the β secretase BACE1, and by a γ secretase that releases an NRG1 intracellular domain (ICD).

Click here to view

In the peripheral nervous system, NRG1 soluble isoforms are mainly released by Schwann cells, while transmembrane isoforms are mainly expressed by the axon and both interact with the heterodimer receptor ErbB2-ErbB3, generally expressed by Schwann cells. NRG1 plays an important role both in the myelination occurring during development and in the different phases occurring after injury in the peripheral nerve: axon degeneration, axon regrowth, remyelination and target reinnervation (Taveggia et al., 2010; Fricker and Bennett, 2011; Pereira et al., 2012; Salzer, 2012; Gambarotta et al., 2013; Heermann and Schwab, 2013).

These processes respond to different cues, as can be inferred from the analysis of transgenic mice models summarized in [Figure 2]. The difference between the myelination process occurring during development and the regeneration process occurring after nerve injury is underlined by the fact that soluble NRG1 isoforms play an important role after nerve injury, while their lack seems irrelevant during development.
Figure 2 The role played by soluble and transmembrane neuregulin 1 (NRG1) isoforms in the myelination occurring during development and in the different phases occurring after nerve injury (axon degeneration, axon regeneration, remyelination and target reinnervation) as inferred from transgenic and conditional knockout mice.
The absence of soluble NRG1 in Schwann cells does not affect myelination during development (+), but nerve regeneration is severely impaired (-) (Stassart et al., 2013). The over-expression of soluble NRG1 in motoneurons and dorsal root ganglia neurons does not affect myelination (+) during development (Michailov et al., 2004), but improves nerve regeneration after injury (++) (Stassart et al., 2013). Animals lacking axonal transmembrane NRG1 show hypomyelination (-) (Michailov et al., 2004; Taveggia et al., 2005) and an impaired rate of peripheral nerve regeneration (-) (Fricker et al., 2013). Animals over-expressing axonal trans­membrane NRG1 show hypermyelination (++) (Michailov et al., 2004; Taveggia et al., 2005) and an improvement of peripheral nerve regeneration (++) after nerve injury (Stassart et al., 2013).

Click here to view

Membrane bound NRG1 determinates the myelination fate during development

During development, the absence of soluble NRG1 in Schwann cells does not affect myelination (Stassart et al., 2013) and, accordingly, soluble NRG1 over-expression in motoneurons and dorsal root ganglia (DRG) neurons does not influence myelination (Michailov et al., 2004).

Conversely, axonal transmembrane NRG1 expression level determines the myelination fate of axons and the thickness of the myelin sheath: animals lacking axonal transmembrane NRG1 show hypomyelination (Michailov et al., 2004; Taveggia et al., 2005), while its over-expression causes hypermyelination (Michailov et al., 2004) and conversion of normally non-myelinated neurons to myelinated neurons (Taveggia et al., 2005).

Soluble and membrane bound NRG1 play different roles after peripheral nerve injury

Animals lacking soluble NRG1 in Schwann cells display peripheral nerve regeneration severely impaired (Stassart et al., 2013). Accordingly, soluble NRG1 over-expression in motoneurons and dorsal root ganglion neurons improves remyelination after injury (Stassart et al., 2013).

Immediately after injury, we (unpublished results) and others (Stassart et al., 2013) observed that the soluble NRG1 transcript is strongly upregulated in the distal and proximal nerve. Because RNA extracted from the nerve belongs mainly to Schwann cells, this observation suggests that Schwann cells, following nerve injury, produce high amounts of soluble NRG1 that could stimulate, in an autocrine manner, Schwann cell survival and, likely, migration of macrophages that remove myelin debris in the early phases of Wallerian degeneration to allow remyelination (Fricker and Bennett, 2011).

The soluble NRG1 upregulation observed in Schwann cells immediately after nerve injury suggests that denervated Schwann cells require autocrine stimulation with soluble NRG1 for survival and that the peripheral nerve regeneration impairment observed in animals lacking Schwann cell derived soluble NRG1 is the indirect consequence of problems occurring during the early phases of axon degeneration and axon regrowth, not during the following phases of remyelination and target reinnervation.

Animals lacking axonal transmembrane NRG1 isoforms show an impaired rate of remyelination and functional recovery at early phases after nerve injury; at later stages, the myelination thickness is not strictly dependent on axonal NRG1 and it has been hypothesized a compensation effect mediated by other factors (Fricker et al., 2013). Accordingly, axonal transmembrane NRG1 over-expression improves peripheral nerve regeneration (Stassart et al., 2013).

Strategies to promote nerve regeneration

These observations suggest that soluble NRG1 plays a role during the early phases following nerve injury corresponding to axon degeneration and regrowth, while transmembrane NRG1 plays a role during later phases corresponding to the remyelination process. Therefore, soluble NRG1, already used in human trials for heart failure treatment, could be an effective therapeutic candidate to promote nerve regeneration. Accordingly, it has been already demonstrated that nerve regeneration is successfully promoted by subcutaneous NRG1 injection (Chen et al., 1998; Yildiz et al., 2011), by NRG1 released by biomaterials (Mohanna et al., 2003; Cai et al., 2004; Mohanna et al., 2005) or by adenovirus encoded NRG1 (Joung et al., 2010). Moreover, it has been suggested that NRG1 is released by the degenerating muscle successfully used to fill a non-nervous conduit graft consisting of a vein to bridge the proximal and the distal stumps after substance loss (Nicolino et al., 2003).

However, we think that treatment with recombinant soluble NRG1 should be carried out in a well-defined time window, during early phases following nerve injury, to improve survival, migration and redifferentiation of Schwann cells, in synergy with endogenous NRG1 released by Schwann cells immediately after injury, that in cases of severe damage may not be sufficient.

Furthermore, NRG1 treatment should be finely regulated, because it has been demonstrated in vitro that different NRG1 isoforms have different pro-myelinating activities and a too high concentration can inhibit myelination (Syed et al., 2010).

A second strategy to promote myelination could be the over-expression of recombinant transmembrane NRG1 in axons during later phases following nerve injury. However, to express transmembrane isoforms, the use of viral vectors would be necessary; to bypass this critical step, manipulation of the processing of endogenously expressed NRG1 could increase its pro-myelinating activity. Actually, transmembrane NRG1 can be cleaved by different metalloproteases, including the α secretase TACE (also known as ADAM17) and the β secretase BACE1, and other not yet identified proteases, that cleave the transmembrane NRG1 in the same stalk region, leaving the EGF-like domain exposed and C terminal domains that differ by a few amino acids ([Figure 1]).

The effect on myelination of these proteases seems to be opposite: the β secretase BACE1 cleavage activates the pro-myelinating activity of NRG1, as shown in BACE1 knockout mice characterized by an hypo-myelination phenotype (Willem et al., 2006; Hu et al., 2008) and in transgenic mice over-expressing a recombinant NRG1 mimicking the BACE1 cleavage, characterized by an hyper-myelinated phenotype (Velanac et al., 2012). It would be interesting to analyze the remyelination efficiency in these mice, to understand if BACE1 plays a role only during developmental myelination or also during remyelination occurring after peripheral nerve injury and repair. However, a pro-myelinating strategy including the treatment with BACE1 stimulators, if any, would not be recommended, because BACE1 is a major drug target for Alzheimer's disease: BACE1-mediated cleavage of amyloid precursor protein (APP) is the first step in the generation of the pathogenic amyloid-β peptides and recent studies demonstrate a wide range of BACE1 physiological substrates and functions (Vassar et al., 2014).

Conversely, the α secretase TACE cleavage inhibits the pro-myelinating activity of NRG1 and its inactivation in motor neurons -obtained through conditional knockout mice-correlates with a hyper-myelination phenotype during development and in the adult (La Marca et al., 2011). No data concerning remyelination efficiency following peripheral nerve injury in mice in which TACE is inactivated or inhibited by pharmacological treatments are available and it would be really useful to test if TACE inactivation promotes remyelination during peripheral nerve regeneration.

Different TACE inhibitors are already available and used in preclinical trials anti rheumatoid arthritis and anti breast cancer (DasGupta et al., 2009; Rego et al., 2014) and could be useful tools to promote remyelination.

Because regeneration is spontaneous, but often incomplete, the development of new strategies to promote peripheral nerve regeneration is a significant goal to achieve, and the pleiotropic NRG1 isoforms appear to be good candidates for therapeutic treatments.[32]

  References Top

1.Bao J, Wolpowitz D, Role LW, Talmage DA (2003) Back signaling by the Nrg-1 intracellular domain. J Cell Biol 161:1133-1141.  Back to cited text no. 1
2.Bao J, Lin H, Ouyang Y, Lei D, Osman A, Kim TW, Mei L, Dai P, Ohlemiller KK, Ambron RT (2004) Activity-dependent transcription regulation of PSD-95 by neuregulin-1 and Eos. Nat Neurosci 7:1250-1258.  Back to cited text no. 2
3.Cai J, Peng X, Nelson KD, Eberhart R, Smith GM (2004) Synergistic improvements in cell and axonal migration across sciatic nerve lesion gaps using bioresorbable filaments and heregulin-beta1. J Biomed Mater Res A 69:247-258.  Back to cited text no. 3
4.Chen LE, Liu K, Seaber AV, Katragadda S, Kirk C, Urbaniak JR (1998) Recombinant human glial growth factor 2 (rhGGF2) improves functional recovery of crushed peripheral nerve (a double-blind study). Neurochem Int 33:341-351.  Back to cited text no. 4
5.Chen Y, Hancock ML, Role LW, Talmage DA (2010) Intramembranous valine linked to schizophrenia is required for neuregulin 1 regulation of the morphological development of cortical neurons. J Neurosci 30:9199-9208.  Back to cited text no. 5
6.DasGupta S, Murumkar PR, Giridhar R, Yadav MR (2009) Current perspective of TACE inhibitors: a review. Bioorg Med Chem 17:444-459.  Back to cited text no. 6
7.Falls DL (2003) Neuregulins: functions, forms, and signaling strategies. Exp Cell Res 284:14-30.  Back to cited text no. 7
8.Fricker FR, Bennett DL (2011) The role of neuregulin-1 in the response to nerve injury. Future Neurol 6:809-822.  Back to cited text no. 8
9.Fricker FR, Antunes-Martins A, Galino J, Paramsothy R, La Russa F, Perkins J, Goldberg R, Brelstaff J, Zhu N, McMahon SB, Orengo C, Garratt AN, Birchmeier C, Bennett DL (2013) Axonal neuregulin 1 is a rate limiting but not essential factor for nerve remyelination. Brain 136:2279-2297.  Back to cited text no. 9
10.Gambarotta G, Fregnan F, Gnavi S, Perroteau I (2013) Neuregulin 1 role in Schwann cell regulation and potential applications to promote peripheral nerve regeneration. Int Rev Neurobiol 108:223-256.  Back to cited text no. 10
11.Heermann S, Schwab MH (2013) Molecular control of Schwann cell migration along peripheral axons: keep moving! Cell Adh Migr 7:18-22.  Back to cited text no. 11
12.Hu X, He W, Diaconu C, Tang X, Kidd GJ, Macklin WB, Trapp BD, Yan R (2008) Genetic deletion of BACE1 in mice affects remyelination of sciatic nerves. FASEB J 22:2970-2980.  Back to cited text no. 12
13.Joung I, Yoo M, Woo JH, Chang CY, Heo H, Kwon YK (2010) Secretion of EGF-like domain of heregulinbeta promotes axonal growth and functional recovery of injured sciatic nerve. Mol Cells 30:477-484.  Back to cited text no. 13
14.La Marca R, Cerri F, Horiuchi K, Bachi A, Feltri ML, Wrabetz L, Blobel CP, Quattrini A, Salzer JL, Taveggia C (2011) TACE (ADAM17) inhibits Schwann cell myelination. Nat Neurosci 14:857-865.  Back to cited text no. 14
15.Lemke G (2006) Neuregulin-1 and myelination. Sci STKE 2006:pe11.  Back to cited text no. 15
16.Mei L, Xiong WC (2008) Neuregulin 1 in neural development, synaptic plasticity and schizophrenia. Nat Rev Neurosci 9:437-452.  Back to cited text no. 16
17.Michailov GV, Sereda MW, Brinkmann BG, Fischer TM, Haug B, Birchmeier C, Role L, Lai C, Schwab MH, Nave KA (2004) Axonal neuregulin-1 regulates myelin sheath thickness. Science 304:700-703.  Back to cited text no. 17
18.Mohanna PN, Terenghi G, Wiberg M (2005) Composite PHB-GGF conduit for long nerve gap repair: a long-term evaluation. Scand J Plast Reconstr Surg Hand Surg 39:129-137.  Back to cited text no. 18
19.Mohanna PN, Young RC, Wiberg M, Terenghi G (2003) A composite poly-hydroxybutyrate-glial growth factor conduit for long nerve gap repairs. J Anat 203:553-565.  Back to cited text no. 19
20.Nicolino S, Raimondo S, Tos P, Battiston B, Fornaro M, Geuna S, Perroteau I (2003) Expression of alpha2a-2b neuregulin-1 is associated with early peripheral nerve repair along muscle-enriched tubes. Neuroreport 14:1541-1545.  Back to cited text no. 20
21.Pereira JA, Lebrun-Julien F, Suter U (2012) Molecular mechanisms regulating myelination in the peripheral nervous system. Trends Neurosci 35:123-134.  Back to cited text no. 21
22.Rego SL, Helms RS, Dreau D (2014) Tumor necrosis factor-alpha-converting enzyme activities and tumor-associated macrophages in breast cancer. Immunol Res 58:87-100.  Back to cited text no. 22
23.Salzer JL (2012) Axonal regulation of Schwann cell ensheathment and myelination. J Peripher Nerv Syst 17 Suppl 3:14-19.  Back to cited text no. 23
24.Stassart RM, Fledrich R, Velanac V, Brinkmann BG, Schwab MH, Meijer D, Sereda MW, Nave KA (2013) A role for Schwann cell-derived neuregulin-1 in remyelination. Nat Neurosci 16:48-54.  Back to cited text no. 24
25.Syed N, Kim HA (2010) Soluble neuregulin and Schwann cell myelination: a therapeutic potential for improving remyelination of adult axons. Mol Cell Pharmacol 2:161-167.  Back to cited text no. 25
26.Syed N, Reddy K, Yang DP, Taveggia C, Salzer JL, Maurel P, Kim HA (2010) Soluble neuregulin-1 has bifunctional, concentration-dependent effects on Schwann cell myelination. J Neurosci 30:6122-6131.  Back to cited text no. 26
27.Taveggia C, Feltri ML, Wrabetz L (2010) Signals to promote myelin formation and repair. Nat Rev Neurol 6:276-287.  Back to cited text no. 27
28.Taveggia C, Zanazzi G, Petrylak A, Yano H, Rosenbluth J, Einheber S, Xu X, Esper RM, Loeb JA, Shrager P, Chao MV, Falls DL, Role L, Salzer JL (2005) Neuregulin-1 type III determines the ensheathment fate of axons. Neuron 47:681-694.  Back to cited text no. 28
29.Vassar R, Kuhn PH, Haass C, Kennedy ME, Rajendran L, Wong PC, Lichtenthaler SF (2014) Function, therapeutic potential and cell biology of BACE proteases: current status and future prospects. J Neurochem 130:4-28.  Back to cited text no. 29
30.Velanac V, Unterbarnscheidt T, Hinrichs W, Gummert MN, Fischer TM, Rossner MJ, Trimarco A, Brivio V, Taveggia C, Willem M, Haass C, Mobius W, Nave KA, Schwab MH (2012) Bace1 processing of NRG1 type III produces a myelin-inducing signal but is not essential for the stimulation of myelination. Glia 60:203-217.  Back to cited text no. 30
31.Willem M, Garratt AN, Novak B, Citron M, Kaufmann S, Rittger A, DeStrooper B, Saftig P, Birchmeier C, Haass C (2006) Control of peripheral nerve myelination by the beta-secretase BACE1. Science 314:664-666.  Back to cited text no. 31
32.Yildiz M, Karlidag T, Yalcin S, Ozogul C, Keles E, Alpay HC, Yanilmaz M (2011) Efficacy of glial growth factor and nerve growth factor on the recovery of traumatic facial paralysis. Eur Arch Otorhinolaryngol 268:1127-1133.  Back to cited text no. 32


  [Figure 1], [Figure 2]

This article has been cited by
1 Irreversible changes occurring in long-term denervated Schwann cells affect delayed nerve repair
Giulia Ronchi,Michele Cillino,Giovanna Gambarotta,Benedetta Elena Fornasari,Stefania Raimondo,Pierfrancesco Pugliese,Pierluigi Tos,Adriana Cordova,Francesco Moschella,Stefano Geuna
Journal of Neurosurgery. 2017; : 1
[Pubmed] | [DOI]
2 Neuregulin 1 functionalization of organic fibers for Schwann cell guidance
Ilaria Tonazzini,Maria Moffa,Dario Pisignano,Marco Cecchini
Nanotechnology. 2017; 28(15): 155303
[Pubmed] | [DOI]
3 In vitromodels for peripheral nerve regeneration
S. Geuna,S. Raimondo,F. Fregnan,K. Haastert-Talini,C. Grothe,Deniz Kirik
European Journal of Neuroscience. 2016; 43(3): 287
[Pubmed] | [DOI]
4 The Neuregulin1/ErbB system is selectively regulated during peripheral nerve degeneration and regeneration
Giulia Ronchi,Kirsten Haastert-Talini,Benedetta Elena Fornasari,Isabelle Perroteau,Stefano Geuna,Giovanna Gambarotta
European Journal of Neuroscience. 2016; 43(3): 351
[Pubmed] | [DOI]
5 Neuregulin-1 protects against acute optic nerve injury in rat model
Wei Yang,Tao-Tao Liu,Xiao-Bin Song,Yan Zhang,Zhao-Hui Li,Qian Hao,Zhi-Hua Cui,Hong Lei Liu,Chun Ling Lei,Jun Liu
Journal of the Neurological Sciences. 2015; 357(1-2): 157
[Pubmed] | [DOI]


Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
Access Statistics
Email Alert *
Add to My List *
* Registration required (free)

  In this article
Article Figures

 Article Access Statistics
    PDF Downloaded297    
    Comments [Add]    
    Cited by others 5    

Recommend this journal