• Users Online: 2248
  • Home
  • Print this page
  • Email this page


 
 Table of Contents  
IMAGING IN NEURAL REGENERATION
Year : 2014  |  Volume : 9  |  Issue : 15  |  Page : 1474-1484

Changes in brain activation in stroke patients after mental practice and physical exercise: a functional MRI study


Capital Medical University School of Rehabilitation Medicine, China Rehabilitation Research Center, Beijing 100068, China

Date of Acceptance23-Jun-2014
Date of Web Publication15-Sep-2014

Correspondence Address:
Luping Song
Capital Medical University School of Rehabilitation Medicine, China Rehabilitation Research Center, Beijing 100068
China
Tong Zhang
M.D., Ph.D., Capital Medical University School of Rehabilitation Medicine, China Rehabilitation Research Center, Beijing 100068
China
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/1673-5374.139465

Rights and Permissions
  Abstract 

Mental practice is a new rehabilitation method that refers to the mental rehearsal of motor imagery content with the goal of improving motor performance. However, the relationship between activated regions and motor recovery after mental practice training is not well understood. In this study, 15 patients who suffered a first-ever subcortical stroke with neurological deficits affecting the right hand, but no significant cognitive impairment were recruited. 10 patients underwent mental practice combined with physical practice training, and 5 patients only underwent physical practice training. We observed brain activation regions after 4 weeks of training, and explored the correlation of activation changes with functional recovery of the affected hands. The results showed that, after 4 weeks of mental practice combined with physical training, the Fugl-Meyer assessment score for the affected right hand was significantly increased than that after 4 weeks of practice training alone. Functional MRI showed enhanced activation in the left primary somatosensory cortex, attenuated activation intensity in the right primary motor cortex, and enhanced right cerebellar activation observed during the motor imagery task using the affected right hand after mental practice training. The changes in brain cortical activity were related to functional recovery of the hand. Experimental findings indicate that cortical and cerebellar functional reorganization following mental practice contributed to the improvement of hand function.

Keywords: nerve regeneration; brain activation; cortical activation; somatosensory cortex; cortical reorganization; stroke; mental practice; functional recovery; motor imagery; neural regeneration


How to cite this article:
Liu H, Song L, Zhang T. Changes in brain activation in stroke patients after mental practice and physical exercise: a functional MRI study. Neural Regen Res 2014;9:1474-84

How to cite this URL:
Liu H, Song L, Zhang T. Changes in brain activation in stroke patients after mental practice and physical exercise: a functional MRI study. Neural Regen Res [serial online] 2014 [cited 2019 Nov 12];9:1474-84. Available from: http://www.nrronline.org/text.asp?2014/9/15/1474/139465

Acknowledgments: We thank all physicians and nurses from Neurorehabilitation Department of China Rehabilitation Research Center for their assistance in performing this study.
Author contributions: Liu H was responsible for data acquisition and analysis, and wrote the paper. Zhang T designed this study. All authors contributed to the paper review and revision, and approved the final version of this paper.



  Introduction Top


In the months following stroke, a critical question is how does functional recovery happen and how does rehabilitation training accelerate the process of functional recovery? Evidence from animal (Nakagomi et al., 2009; Ziemka-Nalecz and Zalewska, 2012) and human (Ward, 2011) studies suggests that neurogenesis and brain reorganization may play a role in functional recovery (Fridman et al., 2004). Brain reorganization includes changes in sensory and motor areas (Seitz et al., 2005) that enable new functions or compensate for lost functions following stroke (Li et al., 2014). After stroke, the ipsilesional primary motor cortex (M1) generates less transcallosal inhibition (Shimizu et al., 2002; Stinear et al., 2008). This may contribute to increased excitability and reduced intracortical inhibition in the contralesional M1 (Butefisch et al., 2003), which are changes associated with reduced functional recovery (Hummel and Cohen, 2005). Thus, a key question arises; after rehabilitation training, is cortical reorganization of decreased excitability in the contralesional M1 related to enhanced functional recovery?

Mental practice (MP) is a new and economical mental training intervention in which individuals imagine performing a given task. Motor imagery (MI) has been used to specifically describe this mental task (Schuster et al., 2011). Several investigators have recently proposed that MP combined with MI could serve as a therapeutic tool to improve a patient's motor performance (Jackson et al., 2004). However, cortical changes are rarely reported after performing MP coupled with physical practice (PP), and there is little research on the relationship between cortical reorganization and functional outcomes after MP training.

Functional magnetic resonance imaging (fMRI) can reveal changes in the contralesional and ipsilesional motor cortex, and can provide a relatively objective evaluation for functional recovery after rehabilitation training (Kimberley et al., 2008; Kwon et al., 2013). There is controversy around cortical changes during the movement execution (ME) and MI task performed with the affected hand after stroke. Kim et al. (2004) found the ME task elicited M1 and primary somatosensory cortex (S1) activation bilaterally. Similarly, Butefisch and colleagues (Butefisch et al., 2005) found the ME task could activate the pre-motor cortex and M1 bilaterally. Additionally, the MI task has been shown to follow the same "rules" as the ME task that influences motor behavior (Parsons et al., 1995; Jeannerod and Frak, 1999). A significant increase in fMRI signal intensity was observed in M1 and S1 cortex during the MI task of a finger to thumb opposition (Porro et al., 1996). Moreover, the same task induced activation of M1 and premotor cortex (Roth et al., 1996). Activation of the ipsilesional S1 and M1 cortex (Lang et al., 1996) and contralesional cerebellum (Luft et al., 1998) have been reported during the MI task.

In the current study, it was hypothesized that changes in brain activation of the S1 and M1 cortex during the MI task would be correlated with hand functional recovery after MP training. fMRI was used to investigate brain-activated regions involved in the MI task of thumb to palm opposition, and Fugl-Meyer assessment of hand function was evaluated.


  Subjects and Methods Top


Subjects

All 15 subjects were right-handed as assessed by the Edinburgh scale (Oldfield, 1971) and gave written consent in accordance with the Declaration of Helsinki. Ethical approval was given by the China Rehabilitation Research Center Ethics Committee, China. Stroke was diagnosed according to the criteria of the Fourth National Academic Conference on Cerebrovascular Disease in 1995.

Inclusion criteria

Inclusion criteria included a first-ever subcortical stroke with neurological deficits affecting the right hand (nadir hand function level beyond Brunnstrom stage IV) and no significant cognitive impairment. Additionally, subjects had to pass the kinesthetic and visual imagery questionnaire (KVIQ score ≥ 25 scores) (Malouin et al., 2007) and the Chaotic Motor Imagery Assessment (CMIA) (Simmons et al., 2008).

Exclusion criteria

Exclusion criteria were in accordance with those used by Sharma et al. (2009), which consisted of carotid artery stenosis/occlusion, persistent language deficit, neglect/inattention, significant renal/liver disease, treatment with selective serotonin reuptake inhibitors/benzodiazepines, visual impairment, depression, left-handedness, significant small vessel disease on routine CT, and contraindications to MRI.

Grouping

Using the above inclusion and exclusion criteria, 10 subjects (two females; average age, 45.80 ± 4.43 years; average duration from stroke, 1.61 ± 0.85 months; average score for Fugl-Meyer assessment before training, 5.5 ± 2.7) were randomly screened as the treatment group that underwent MP combined with PP training. Five age-matched subjects according to the above inclusion and exclusion criteria (one female; age, 45.0 ± 4.3 years; average duration from stroke, 1.66 ± 0.76 months; average score for Fugl-Meyer assessment before training, 5.8 ± 2.2) were randomly selected as the control group and subsequently underwent PP training. The clinical data for all subjects is presented in [Table 1].
Table 1: Clinical data of all subjects

Click here to view


fMRI and Fugl-Meyer assessment

Subjects who were able to perform MI undertook the remainder of the examination with fMRI and Fugl-Meyer assessment 2 days before training (baseline measurement point). The intervention was conducted once each working day for 4 weeks. Except for the CMIA (outcome measure point), examinations including fMRI and Fugl-Meyer assessment were performed on the last treatment day or the day after fMRI and Fugl-Meyer assessment, and were performed after 4 weeks of training by the same examiners who administered them before training. The examiners were blinded to all participant group assignments.

Intervention

Control group subjects underwent PP training and used the Neurodevelopmental Treatment-Bobath (NDT-Bobath) method (Bobath, 1990). PP training was implemented for 45 minutes each weekday, for 4 weeks. The exercises concentrated on hand movements that were intended to maintain a range of motion, induce isolated hand movement, elicit grasping and gripping, and promote refined activity training.

The treatment group underwent MP combined with MI (MP + MI) training in addition to PP training. MP + MI training specifically refers to MP focused on the mental rehearsal of MI contents with the goal of improving motor performance. The MP + MI training method used was similar to the method of Simmons et al. (2008). Each MP + MI session was performed by adopting the appropriate position, followed by explanation of rules and instructions by the physiotherapist, and then performance of the required tasks by the subjects. For a MP + MI session, subjects sat in a chair at a table with hips, knees, and ankles at 90°, and adopted a hand position appropriate to the task to be imagined during training. The rules of the MI task were explained as imagining in the first person. MP + MI training was also implemented for 45 minutes each weekday, for 4 weeks. Each day, MP + MI training included three sessions with a 5-minute break between the two types. In the MP + MI training sessions, the participant imagined themselves performing an instructed movement without actually performing the movement. The participant received the following instructions before each session: "During this session there are some MI activities including flexion/extension of the thumb, abduction/adduction of all digits, making a fist/spreading the hand, moving extended fingers backwards and forwards, moving the hand between the ulnar and radial deviation that you are going to imagine doing with your paretic hand." Each MI activity was performed as follows: first, the physiotherapist explained the MI task to be imagined by the subject and then asked the subject to imagine two times. Second, subjects used the non-paretic hand to physically perform the task twice. Third, subjects imagined the task using the non-paretic hand. The instructions given were, "Close your eyes. Concentrate on your hand, but do not move it. Concentrate on how it feels just resting there. Do not move your fingers, hand, or arm. Just imagine it and do not move anything. Open your eyes when you have done this action two times." Last, subjects imagined the MI task using their paretic hand three times. The same verbal instructions were given for the paretic hand and the non-paretic hand.

Assessment of hand function

Hand function was measured using the hand section of the Fugl-Meyer assessment scale (Fugl-Meyer et al., 1975). Each task in the Fugl-Meyer assessment is scored on a 3-point ordinal scale (0 = cannot perform; 2 = can perform fully), and all items are summed to provide a total score (maximum = 20). The Fugl-Meyer assessment has high test-retest reliability (total = 0.98-0.99 scores; subtests = 0.87-1.00 scores), inter-rater reliability, and construct validity (Duncan et al., 1983). An experienced examiner blinded to each participant's intervention determined the Fugl-Meyer assessment score.

fMRI paradigm of thumb to palm opposition

The task in the fMRI experiment included a block design with auditory-paced (1 Hz) movements in which the thumb touched the palm in an opposition sequence (Baeck et al., 2012). The task duration was 6 minutes 24 seconds. All subjects performed the ME/MI task with the affected right hand inside a magnetic resonance (MR) scanner, and following a brief familiarization period. A control condition, in which subjects did not move and remained at rest, was included in the task. The two blocks were each run twice, with the MI task performed first and the ME task performed second (Sharma et al., 2008). During each run, subjects received auditory prompts every 30 seconds, asking them to either rest or to perform the thumb-to-palm opposition task with the affected hand, and always starting from rest.

For the affected right hand MI paradigm, subjects were instructed to mentally rehearse thumb-to-palm opposition movements by a pre-recorded voice that said "imagery", and to change to the rest condition when the voice said "rest". Auditory prompts were presented through sound-insulated earphones connected to the computer's audio output. The imagery condition was then tested against the rest condition. For the rest control condition, subjects were instructed not to imagine anything. The subjects alternated between imagery and rest tasks for 6 cycles beginning with the rest task. Data for the imagery and rest conditions were obtained within 30 seconds of one another [Figure 1].
Figure 1: Functional MRI paradigm of motor execution (ME) and motor imagery (MI) tasks.
The total experiment included two runs, one run for the MI task and one run for the ME task. Each run was 6 minutes 24 seconds, and divided into a 24-second preparatory stage and a 6-minute task stage. During each run, subjects received auditory prompts every 30 seconds, asking them to either rest or to perform the MI/ME task of thumb-to-palm opposition with the affected hand, and always starting from rest. Min: Minute; s (sec): second.


Click here to view


fMRI scanning was first performed with the MI task followed by the ME task. For the affected hand (right hand) ME paradigm, subjects were instructed to perform the requested movement by a pre-recorded voice that said "motion", and to change to the rest condition when the voice said "rest". Subjects were instructed to alternate between motion and rest conditions for 6 cycles, beginning with the motion condition. Data for the motion and rest conditions were obtained within 30 seconds of one another [Figure 1]. The entire functional scanning run lasted approximately 15 minutes. During fMRI scanning, room lights were dimmed and subject's eyes were closed.

fMRI parameters

A 1.5 T General Electric Signa scanner (Signa; General Electric Medical Systems, Milwaukee, WI, USA) equipped with a transmit-receive body coil and a commercial eight-element head coil array was used to obtain blood oxygenation level dependent (BOLD) contrast for each participant. T2*-weighted echo planar imaging was used for fMRI acquisition. The following acquisition parameters were used in the fMRI protocol: echo time (TE) = 40 ms, repetition time (TR) = 3,000 ms, field of view (FOV) = 24 cm, acquisition matrix = 64 × 64. Using a mid-sagittal scout image, 24 contiguous axial slices with a 5-mm thickness were placed along the anterior-posterior commissure plane to cover the entire brain.

Image analysis

The general linear model in statistical parametric mapping 8 (SPM8) implemented in MATLAB was used to perform whole-brain image analysis (Baeck et al., 2012). To adjust for residual head movement, functional images were realigned to the first image. The realigned images were then spatially normalized to fit the Montreal Neurological Institute template based on the standard stereotaxic coordinate system. Additionally, a mask of each participant's stroke lesion was drawn and normalized to the data using a model created from the participant's T1-weighted anatomical scans (Brett et al., 2001). All images were subsequently smoothed with an isotropic Gaussian kernel having a full width of 8 mm at half maximum. SPM8 was used for statistical analysis of preprocessed MRI data on a voxel-by-voxel basis. To identify which cerebral networks were activated under ME and MI, we analyzed the BOLD response under ME/MI conditions. For each subject, a boxcar model convolved with the hemodynamic response function was applied to the fMRI time series at each voxel, and t-maps for contrast ME/MI minus rest were computed. Clusters with < 10 voxels were ignored.

Statistical analysis

Data are expressed as mean ± SD. SPSS 17.0 software (SPSS, Chicago, IL, USA) was used to perform all statistical analyses. Hand function before and after training in each group was compared using paired t-tests. A two-sample t-test was used to compare hand function between treatment and control groups. Before training and after training, a one-sample t-test was used to compare fMRI data between the ME/MI task vs rest in each group. A paired t-test was used to compare fMRI data between post-training with pre-training data in each group and a two-sample t-test was used to compare fMRI data between the treatment and control groups. Statistical significance was accepted at P < 0.05. Correction for multiple comparisons was performed using a false discovery rate (FDR) of 0.05. A Pearson rank correlation analysis was performed between the post- and pre-training activation intensity (T value) of the ipsilesional (left) S1 and contralesional (right) M1 during the ME/MI task, and the post- and pre-training Fugl-Meyer assessment score. A correlation with a P value < 0.05 was considered significant.


  Results Top


Effect of MP combined with PP training on hand function of stroke patients

There was no significant difference in the Fugl-Meyer assessment score between groups before training. However, a paired t-test showed a significant difference between pre- and post-training Fugl-Meyer assessment scores for both groups (P < 0.01; [Figure 2], in which the Fugl-Meyer assessment score increased after training. Furthermore, the Fugl-Meyer assessment score was higher in the treatment group that had performed MP combined with PP training compared with the control group that had performed only PP training (P < 0.05; [Figure 2].
Figure 2: Comparison of pre-training and post-training Fugl-Meyer assessment scores for hand function between the treatment group receiving MP combined with PP training (MP + PP) and the control group receiving PP training alone (PP).
Data are expressed as mean ± SD. A paired t-test showed post-training Fugl-Meyer assessment scores were higher than pre-training Fugl-Meyer assessment scores in the two groups (**P < 0.01). A two-sample t-test showed post-training Fugl-Meyer assessment scores in the MP + PP group were higher than post-training Fugl-Meyer assessment scores in the PP group (*P < 0.05). MP: Mental practice; PP: physical prac­tice; pre-FMA: pre-training Fugl-Meyer assessment score; post-FMA: post-training Fugl-Meyer assessment score.


Click here to view


Effect of MP combined with PP training on brain activation of stroke patients

Comparison of ME/MI task vs. rest before and after training, and comparison of ME and MI task between before and after training in the treatment group

The main effect of the ME and MI tasks before and after training is shown in [Table 2] and [Figure 3]. Before training, the treatment group during the ME task showed increased activity in left S1, the cingulate gyrus, and right anterior cingulate area [Figure 3]A). After 4 weeks of combined MP-MI and PP training, left S1 activation intensity (T value) increased, whereas right inferior temporal operculum and left rolandic operculum were found to be inactive [Figure 3]B). Before training, the treatment group showed increased activity in the right M1 and inferior frontal operculum during the MI task [Figure 3]C). After 4 weeks of combined MP-MI and PP training, the activation intensity (T value) in the right M1 cortex was less compared with before training. The brain regions activated during the MI task after training were the left S1, right supramarginal gyrus and superior temporal gyrus, left sub-gyral and inferior parietal, and the superior temporal gyrus [Figure 3]D).
Table 2: Comparison of activated regions before and after training in the two groups

Click here to view
Figure 3: Average brain activation maps contrasted from motor execution (ME) and motor imagery (MI) minus rest in the two groups before and after training.
The eight images (A-H) are cross-sectional images at the MNI coordinate of z from the 32 to 44 mm level. The color in the images represents the activation intensity. Color changes from red to yellow represent increasing activity intensity. (A) Before training, the treatment group (MP + PP) receiving mental practice (MP) combined with physical practice (PP) training during the ME task showed increased activation intensity in the left primary somatosensory cortex (S1), the cingulate gyrus, and right anterior cingulate area. (B) After training, the treatment group during the ME task showed increased left S1 activation intensity. (C) Before training, the treatment group during the MI task showed increased activation intensity in the right primary motor cortex (M1) and inferior frontal operculum. (D) After training, the treatment group showed decreased activation intensity in the right M1, but increased activation intensity in the left S1 during the MI task. (E) Before training, the control group (PP) receiving PP training during the ME task showed increased activation intensity in the left S1 and inferior parietal cortex. (F) After training, the control group showed increased activation intensity in the right inferior parietal cortex, right M1, and left S1 during the ME task. (G) Before training, the control group showed increased activation intensity in the right inferior frontal cortex and right M1 during the MI task. (H) After training, the control group showed increased activation intensity in the left and right superior temporal gyrus, left inferior frontal gyrus, and right M1 during the MI task.


Click here to view


Comparison of ME/MI task vs. rest before and after training, and comparison of ME and MI task between before and after training in the control group

Before training, the control group showed increased activity in the left S1, left sub-gyral, and inferior parietal cortex during the ME task [Figure 3]E). After 4 weeks of PP training, the regions activated during the ME task were the right inferior parietal cortex, right M1, and left S1 cortex [Figure 3]F). For the left S1, the activation intensity during the ME task was higher compared with before training. Before training, the control group showed activation in the right inferior frontal cortex and the right M1 during the MI task [Figure 3]G). The activated regions during the MI task following 4 weeks of PP training were the left and right superior temporal gyrus, the left inferior frontal gyrus, and the right M1 [Figure 3]H).

Comparison of the ME and MI tasks before training between the treatment group and the control group, and comparison of the ME and MI tasks after training in the two groups

Before training, there were no suprathreshold activated clusters for the two groups during the ME and MI task (FDR corrected P < 0.05). After training, activated regions during the ME task were more highly activated in the treatment group compared with the control group (FDR corrected P < 0.05; [Table 3]. Activated regions included the right cerebellum, right temporal gyrus, left inferior frontal gyrus, and left S1 [Figure 4]A). Activated regions during the MI task were more highly activated in the treatment group compared with the control group (FDR corrected P < 0.05; [Table 3]. Activated regions included the right angular gyrus, right inferior frontal gyrus, right middle frontal gyrus, left sub-gyral, left superior frontal gyrus, and left supplementary motor area [Figure 4]B).
Table 3: Activated regions for ME/MI task before training and after training in the two groups

Click here to view
Figure 4: Average brain activation maps derived from the comparison of motor execution (ME) and motor imagery (MI) between groups (post-training) and within groups (post-training minus pre-training).
Clusters with significant differences were overlapped on render views (posterior, on the left; anterior, on the right (row 1), right, on the left; left, on the right (row 2), inferior, on the left; superior, on the right (row 3). The color in the image represents activated intensity. Red to yellow rep­resents higher activation intensity. (A) After training, activation intensity in the right cerebellum, right temporal gyrus, left inferior frontal gyrus, and left primary somatosensory cortex (S1) was higher in the treatment group (MP + PP) receiving mental practice (MP) combined with physical practice (PP) training, compared with the control group receiving PP training during the ME task. (B) After training, the activation intensity of the right angular gyrus, right inferior frontal gyrus, right middle frontal gyrus, left superior frontal gyrus, and left supplementary motor area in the treatment group was higher compared with the control group during the MI task. (C) In the treatment group, the activation intensity of the left S1, right supramarginal gyrus, and right angular gyrus was higher after training compared with before training during the ME task. (D) In the treatment group, the activation intensity of the cerebellum bilaterally, left inferior temporal gyrus, left sub-gyral gyrus, right angular gyrus, corpus callosum, and S1 bilaterally during the MI task was higher after training compared with before training. (E) In the control group, the activation intensity of the left supramarginal gyrus and right occipital lobe during the ME task was higher after training compared with before training. (F) In the control group, the activation intensity of the left pons during the MI task was higher after training compared with before training.


Click here to view


In the treatment group, the regions activated during the ME task showed higher activity after training compared with before training (FDR corrected P < 0.05; [Table 3]. These regions were the left S1, right supramarginal gyrus, and right angular gyrus [Figure 4]C). The regions activated during the MI task showed higher activity after training compared with before training (FDR corrected P < 0.05; [Table 3], which were mainly the cerebellum bilaterally, left inferior temporal gyrus, left sub-gyral gyrus, right angular gyrus, corpus callosum, and S1 bilaterally [Figure 4]D).

In the control group, the regions activated during the ME task showed higher activity after training compared with before training (FDR corrected P < 0.05; [Table 3], mainly in the left supramarginal gyrus and right occipital lobe [Figure 4]E). The regions activated in the MI task showed higher activity after training compared with before training (FDR corrected P < 0.05; [Table 3], and mainly in the left pons [Figure 4]F).

Correlation between fMRI activation intensity and Fugl-Meyer assessment score

Among regions activated during the ME and MI task with the affected right hand for both groups, increased activation intensity (T value) in the left S1 between pre- and post-training was positively correlated with Fugl-Meyer assessment score in the treatment group (ME: r = 0.732, P = 0.016; [Figure 5]A; MI: r = 0.695, P = 0.026; [Figure 5]B). However, the increase in activation intensity in left S1 with the affected right hand during the ME task between pre- and post-training was not correlated with Fugl-Meyer assessment score in the control group (r = 0.577, P = 0.308), and there was no significant increase in S1 activation in the control group during the MI task when post-training was compared with pre-training. Decreased activation intensity in the right M1 during the MI task with the affected right hand for post-training minus pre-training was negatively correlated with Fugl-Meyer assessment score in the treatment group (r = −0.644, P = 0.044; [Figure 5]C). Additionally, decreased activation intensity in the right M1 for post-training minus pre-training was not correlated with Fugl-Meyer assessment score in the control group (r = −0.289, P = 0.638; [Figure 5]D).
Figure 5: Correlation between increased Fugl-Meyer assessment score and increased ipsilesional S1 and decreased contralesional M1 activation intensity in the two groups before and after training.
(A) Pearson rank correlation analysis showed that increased ipsilesional S1 activation intensity was positively correlated with FMA score for post-and pre-training in the treatment group performing the MI task (r = 0.695, P = 0.026). (B) Pearson rank correlation analysis showed that decreased right M1 activation intensity was negatively correlated with FMA score for post- and pre-training in the treatment group (r = −0.644, P = 0.044). (C) Pearson rank correlation analysis showed that decreased right M1 activation intensity was negatively correlated with FMA score for post- and pre-training in the treatment group (r = −0.644, P = 0.044). (D) Pearson rank correlation analysis showed that decreased right M1 activation in­tensity was not correlated with FMA score for post- and pre-training in the control group (r = −0.289, P = 0.638). MI: Motor imagery; d: the dif­ference score of post-training minus pre-training; T: activated intensity; S1: primary somatosensory cortex; M1: primary motor cortex; MP: mental practice; PP: physical practice; FMA: Fugl-Meyer assessment; dFMA: the value in the ordinate axis name.


Click here to view



  Discussion Top


The effect of hand function recovery

Reorganization in the nervous system following stroke remains a critical issue for stroke survivors, as some degree of functional recovery is possible (Twitchell, 1965). Specifically, adaptive rehabilitation methods have been shown to assist in brain reorganization and recovery of lost skills (Grefkes et al., 2010), and neural reorganization itself is a critical component of stroke rehabilitation (Mintzopoulos et al., 2009). Clinical imaging findings confirmed that motor functional recovery after stroke correlated with activity changes in M1, and other cortical regions related to motor processing (Weiller et al., 2006). Thus, by comparing fMRI images obtained during MI and ME tasks during different stroke rehabilitation periods, the regions involved and changes in brain activity can be obtained. Unlike PP training, MP in principle is not dependent on residual function but still incorporates voluntary drive. In patients with stroke, MP performed with MI may therefore provide a substitute for ME as a means to activate the motor network (Sharma et al., 2006). MP performed with MI has emerged as a non-invasive strategy that has been shown to improve functioning of the affected arm, even years after stroke (Page et al., 2009). Jackson et al. (2001) considered that MP alone is used as supplementary method and is combined with other traditional rehabilitation trainings in patients with stroke. The combination of MP and PP may be effective in the treatment of Parkinson's disease and the implementation of this treatment regimen extends practice time with negligible risk and low cost (Tamir et al., 2007). The results of a systematic literature review show that those successful MP interventions were added after PP training (Schuster et al., 2011). The current study compared the effects of MP combined with PP training and PP training alone on hand recovery in patients exhibiting stable right hemi-paresis. Furthermore, consistent with our hypotheses, the Fugl-Meyer assessment score after MP combined with PP training was higher compared with after PP training alone, which suggests decreased functional limitation and impairment in the affected right hand.

Changes in ipsilesional (left) S1 activation in the two groups using the affected right hand during the ME task

Our results showed that left S1 activation intensity in the two groups using the affected right hand during the ME task increased more after training compared with before training. Carey et al. (2002) previously studied individuals with chronic stroke, who showed improved tracking accuracy after receiving intensive tracking training. This improvement was accompanied by brain cortical reorganization that was apparent in the treatment group with increased activation in the left S1. Moreover, in the present study, increased activation intensity in the left S1 was correlated with hand function recovery that followed MP+PP training. However after PP training alone, increased activation intensity in S1 was not correlated with hand function recovery. Thus, increased activation in the left S1 cortex played an important role in improving hand function after MP training. The S1 is involved in learning novel motor skills (Luft et al., 2004). Moreover, a wide range of plastic changes has been shown to take place in ipsilesional cortical regions after stroke (Ward, 2005). Thus, the integrity of these areas and their corticospinal output are clearly important for functional recovery (Ward, 2011). Overall, the results show that the left S1 is involved in brain functional reorganization, as represented by enhanced activation intensity associated with sensory information concerning motor processes.

Changes in ipsilesional (left) S1 activation and contralesional (right) M1 activation in the two groups using the affected right hand during the MI task

After training, the left S1 was active when the affected right hand was used during the MI task. Right M1 activation intensity decreased with the affected right hand after MP + PP training. Puh et al. (2007) showed that contralesional M1 activation decreased from 3 weeks to 3 months after injury. The current study showed a decline in right M1 activation after 4 weeks. This suggests that MP+PP training might accelerate the process of contralesional M1 functional reorganization. Moreover, increased activation intensity in the left S1 correlated with hand function recovery. Additionally, decreased activation intensity in the right M1 correlated with improved hand function after MP+PP training. However, there was a small decrease in activation in the right M1 after PP training alone. There was no correlation between decreased M1 activation and Fugl-Meyer assessment score in the control group. Thus, as left S1 activation increased and right M1 activation decreased, hand functional recovery improved after MP training. Increased left S1 activation played a greater role in functional reorganization, which allowed improvement in hand function after MP training. This is in agreement with Jang's hypothesis that hand motor function associated with infarcted M1 can reorganize into S1 (Jang et al., 2005).

Changes in contralesional (right) cerebellum activation in the treatment group using the affected right hand during the MI task

MI was able to activate the left S1 to the same degree as the ME task with the affected right hand, although activation intensity of the left S1 during the MI task was weaker compared with that during the ME task. Similar to ME, increased left S1 activation correlated with hand function recovery in stroke patients. Moreover, the results also showed that after 4 weeks of training using the affected right hand during MI, the right cerebellum was activated. Fujii and Nakada (2003) showed that functional reorganization in the left hemisphere involved the left M1 and S1 activation and right cerebellum activation, which was associated with better functional recovery. Small et al. (2002) also showed that patients with good recovery had clear changes in cerebellar hemisphere activation contralateral to the injured corticospinal tract, which were related to hemodynamic changes such as diaschisis, or to the definite role of the cerebellum in motor skill learning. Based on these results, we suggest that MP+PP training promoted decreased right M1 activation, increased left S1 activation, and increased right cerebellum activation. Reorganization in these regions correlated with hand function recovery in our stroke patients.

Changes in corpus callosum activation in the treatment group using the affected right hand during the MI task

The corpus callosum, which is the largest white matter structure in the human brain connecting the cerebral hemispheres, was activated during the MI task in the affected right hand after training. The corpus callosum plays a crucial role in maintaining independent processing in the hemispheres and in integrating information between hemispheres (Takeuchi et al., 2012). The timing and accuracy of bimanual motor tasks are thought to be predominantly programmed by one of the hemispheres. To monitor the activity of motor regions of the opposite hemisphere, an efference copy of the planned motor program is sent to the opposite hemisphere through the corpus callosum allowing for optimal timing of movements in both hands (Liuzzi et al., 2011). Thus, the corpus callosum might be involved in functional recovery of the hand.

MP combined with PP activated the left S1 cortex, right cerebellum, and corpus callosum, following decreased activation in the right M1, and this activation was related to motor skill learning and interhemispheric interaction. Functional reorganization may thus be correlated with hand function recovery in stroke patients.

There are some limitations of the current study. Future studies should focus on the dynamic relationship among active brain regions. Moreover, new methods could be used to analyze fMRI data. Functional improvement in daily life is the ultimate goal of rehabilitation, and more research focusing on this outcome is needed.[53]

 
  References Top

1.Allali G, van der Meulen M, Beauchet O, Rieger SW, Vuilleumier P, Assal F (2013) The neural basis of age-related changes in motor imagery of gait: an fMRI study. J Gerontol A Biol Sci Med Sci [Epub ahead of print].  Back to cited text no. 1
    
2.Baeck JS, Kim YT, Seo JH, Ryeom HK, Lee J, Choi SM, Woo M, Kim W, Kim JG, Chang Y (2012) Brain activation patterns of motor imagery reflect plastic changes associated with intensive shooting training. Behav Brain Res 234:26-32.  Back to cited text no. 2
    
3.Bobath B (1990) Adult Hemiplegia: Evaluation and Treatment. 3 rd ed. London: Heinemann Medical Books.  Back to cited text no. 3
    
4.Brett M, Leff AP, Rorden C, Ashburner J (2001) Spatial normalization of brain images with focal lesions using cost function masking. Neuroimage 14:486-500.  Back to cited text no. 4
    
5.Butefisch CM, Kleiser R, Korber B, Muller K, Wittsack HJ, Homberg V, Seitz RJ (2005) Recruitment of contralesional motor cortex in stroke patients with recovery of hand function. Neurology 64:1067-1069.  Back to cited text no. 5
    
6.Butefisch CM, Netz J, Wessling M, Seitz RJ, Homberg V (2003) Remote changes in cortical excitability after stroke. Brain 126:470-481.  Back to cited text no. 6
    
7.Butler T, Imperato-McGinley J, Pan H, Voyer D, Cordero J, Zhu YS, Stern E, Silbersweig D (2006) Sex differences in mental rotation: top-down versus bottom-up processing. Neuroimage 32:445-456.  Back to cited text no. 7
    
8.Callow N, Hardy L (2004) The relationship between the use of kinaesthetic imagery and different visual imagery perspectives. J Sports Sci 22:167-177.  Back to cited text no. 8
    
9.Carey JR, Kimberley TJ, Lewis SM, Auerbach EJ, Dorsey L, Rundquist P, Ugurbil K (2002) Analysis of fMRI and finger tracking training in subjects with chronic stroke. Brain 125:773-788.  Back to cited text no. 9
    
10.Duncan PW, Propst M, Nelson SG (1983) Reliability of the Fugl-Meyer assessment of sensorimotor recovery following cerebrovascular accident. Phys Ther 63:1606-1610.  Back to cited text no. 10
    
11.Fridman EA, Hanakawa T, Chung M, Hummel F, Leiguarda RC, Cohen LG (2004) Reorganization of the human ipsilesional premotor cortex after stroke. Brain 127:747-758.  Back to cited text no. 11
    
12.Fugl-Meyer AR, Jaasko L, Leyman I, Olsson S, Steglind S (1975) The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scand J Rehabil Med 7:13-31.  Back to cited text no. 12
    
13.Fujii Y, Nakada T (2003) Cortical reorganization in patients with subcortical hemiparesis: neural mechanisms of functional recovery and prognostic implication. J Neurosurg 98:64-73.  Back to cited text no. 13
    
14.Grefkes C, Nowak DA, Wang LE, Dafotakis M, Eickhoff SB, Fink GR (2010) Modulating cortical connectivity in stroke patients by rTMS assessed with fMRI and dynamic causal modeling. Neuroimage 50:233-242.  Back to cited text no. 14
    
15.Hummel F, Cohen LG (2005) Improvement of motor function with noninvasive cortical stimulation in a patient with chronic stroke. Neurorehabil Neural Repair 19:14-19.  Back to cited text no. 15
    
16.Jackson PL, Doyon J, Richards CL, Malouin F (2004) The efficacy of combined physical and mental practice in the learning of a foot-sequence task after stroke: a case report. Neurorehabil Neural Repair 18:106-111.  Back to cited text no. 16
    
17.Jackson PL, Lafleur MF, Malouin F, Richards C, Doyon J (2001) Potential role of mental practice using motor imagery in neurologic rehabilitation. Arch Phys Med Rehabil 82:1133-1141.  Back to cited text no. 17
    
18.Jang SH, Ahn SH, Yang DS, Lee DK, Kim DK, Son SM (2005) Cortical reorganization of hand motor function to primary sensory cortex in hemiparetic patients with a primary motor cortex infarct. Arch Phys Med Rehabil 86:1706-1708.  Back to cited text no. 18
    
19.Jeannerod M, Frak V (1999) Mental imaging of motor activity in humans. Curr Opin Neurobiol 9:735-739.  Back to cited text no. 19
    
20.Kim YH, Jang SH, Byun WM, Han BS, Lee KH, Ahn SH (2004) Ipsilateral motor pathway confirmed by combined brain mapping of a patient with hemiparetic stroke: a case report. Arch Phys Med Rehabil 85:1351-1353.  Back to cited text no. 20
    
21.Kimberley TJ, Khandekar G, Borich M (2008) fMRI reliability in subjects with stroke. Exp Brain Res 186:183-190.  Back to cited text no. 21
    
22.Kwon HG, Choi BY, Chang CH, Kim SH, Jung YJ, Jang SH (2013) Recovery of an injured corticospinal tract during a critical period in a patient with intracerebral hemorrhage. NeuroRehabilitation 32:27-32.  Back to cited text no. 22
    
23.Lang W, Cheyne D, Hollinger P, Gerschlager W, Lindinger G (1996) Electric and magnetic fields of the brain accompanying internal simulation of movement. Brain Res Cogn Brain Res 3:125-129.  Back to cited text no. 23
    
24.Li W, Li Y, Zhu W, Chen X (2014) Changes in brain functional network connectivity after stroke. Neural Regen Res 9:51-60.  Back to cited text no. 24
    
25.Liuzzi G, Horniss V, Zimerman M, Gerloff C, Hummel FC (2011) Coordination of uncoupled bimanual movements by strictly timed interhemispheric connectivity. J Neurosci 31:9111-9117.  Back to cited text no. 25
    
26.Luft AR, Skalej M, Stefanou A, Klose U, Voigt K (1998) Comparing motion- and imagery-related activation in the human cerebellum: a functional MRI study. Hum Brain Mapp 6:105-113.  Back to cited text no. 26
    
27.Luft AR, McCombe-Waller S, Whitall J, Forrester LW, Macko R, Sorkin JD, Schulz JB, Goldberg AP, Hanley DF (2004) Repetitive bilateral arm training and motor cortex activation in chronic stroke: a randomized controlled trial. JAMA 292:1853-1861.  Back to cited text no. 27
    
28.Malouin F, Richards CL, Jackson PL, Lafleur MF, Durand A, Doyon J (2007) The Kinesthetic and Visual Imagery Questionnaire (KVIQ) for assessing motor imagery in persons with physical disabilities: a reliability and construct validity study. J Neurol Phys Ther 31:20-29.  Back to cited text no. 28
    
29.Mintzopoulos D, Astrakas LG, Khanicheh A, Konstas AA, Singhal A, Moskowitz MA, Rosen BR, Tzika AA (2009) Connectivity alterations assessed by combining fMRI and MR-compatible hand robots in chronic stroke. Neuroimage 47 Suppl 2:T90-97.  Back to cited text no. 29
    
30.Nakagomi T, Taguchi A, Fujimori Y, Saino O, Nakano-Doi A, Kubo S, Gotoh A, Soma T, Yoshikawa H, Nishizaki T, Nakagomi N, Stern DM, Matsuyama T (2009) Isolation and characterization of neural stem/progenitor cells from post-stroke cerebral cortex in mice. Eur J Neurosci 29:1842-1852.  Back to cited text no. 30
    
31.Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97-113.  Back to cited text no. 31
    
32.Page SJ (2000) Imagery improves upper extremity motor function in chronic stroke patients: a pilot study. Occupational Therapy Journal of Research 20:200-215.  Back to cited text no. 32
    
33.Page SJ, Szaflarski JP, Eliassen JC, Pan H, Cramer SC (2009) Cortical plasticity following motor skill learning during mental practice in stroke. Neurorehabil Neural Repair 23:382-388.  Back to cited text no. 33
    
34.Parsons LM, Fox PT, Downs JH, Glass T, Hirsch TB, Martin CC, Jerabek PA, Lancaster JL (1995) Use of implicit motor imagery for visual shape discrimination as revealed by PET. Nature 375:54-58.  Back to cited text no. 34
    
35.Porro CA, Francescato MP, Cettolo V, Diamond ME, Baraldi P, Zuiani C, Bazzocchi M, di Prampero PE (1996) Primary motor and sensory cortex activation during motor performance and motor imagery: a functional magnetic resonance imaging study. J Neurosci 16:7688-7698.  Back to cited text no. 35
    
36.Puh U, Vovk A, Sevsek F, Suput D (2007) Increased cognitive load during simple and complex motor tasks in acute stage after stroke. Int J Psychophysiol 63:173-180.  Back to cited text no. 36
    
37.Roth M, Decety J, Raybaudi M, Massarelli R, Delon-Martin C, Segebarth C, Morand S, Gemignani A, Decorps M, Jeannerod M (1996) Possible involvement of primary motor cortex in mentally simulated movement: a functional magnetic resonance imaging study. Neuroreport 7:1280-1284.  Back to cited text no. 37
    
38.Schuster C, Hilfiker R, Amft O, Scheidhauer A, Andrews B, Butler J, Kischka U, Ettlin T (2011) Best practice for motor imagery: a systematic literature review on motor imagery training elements in five different disciplines. BMC Med 9.  Back to cited text no. 38
    
39.Seitz RJ, Kleiser R, Butefisch CM (2005) Reorganization of cerebral circuits in human brain lesion. Acta Neurochir Suppl 93:65-70.  Back to cited text no. 39
    
40.Sharma N, Pomeroy VM, Baron JC (2006) Motor imagery: a backdoor to the motor system after stroke? Stroke 37:1941-1952.  Back to cited text no. 40
    
41.Sharma N, Jones PS, Carpenter TA, Baron JC (2008) Mapping the involvement of BA 4a and 4p during Motor Imagery. Neuroimage 41:92-99.  Back to cited text no. 41
    
42.Sharma N, Simmons LH, Jones PS, Day DJ, Carpenter TA, Pomeroy VM, Warburton EA, Baron JC (2009) Motor imagery after subcortical stroke: a functional magnetic resonance imaging study. Stroke 40:1315-1324.  Back to cited text no. 42
    
43.Shimizu T, Hosaki A, Hino T, Sato M, Komori T, Hirai S, Rossini PM (2002) Motor cortical disinhibition in the unaffected hemisphere after unilateral cortical stroke. Brain 125:1896-1907.  Back to cited text no. 43
    
44.Simmons L, Sharma N, Baron JC, Pomeroy VM (2008) Motor imagery to enhance recovery after subcortical stroke: who might benefit, daily dose, and potential effects. Neurorehabil Neural Repair 22:458-467.  Back to cited text no. 44
    
45.Small SL, Hlustik P, Noll DC, Genovese C, Solodkin A (2002) Cerebellar hemispheric activation ipsilateral to the paretic hand correlates with functional recovery after stroke. Brain 125:1544-1557.  Back to cited text no. 45
    
46.Stinear CM, Barber PA, Coxon JP, Fleming MK, Byblow WD (2008) Priming the motor system enhances the effects of upper limb therapy in chronic stroke. Brain 131:1381-1390.  Back to cited text no. 46
    
47.Takeuchi N, Oouchida Y, Izumi S (2012) Motor control and neural plasticity through interhemispheric interactions. Neural Plast 2012:823285.  Back to cited text no. 47
    
48.Tamir R, Dickstein R, Huberman M (2007) Integration of motor imagery and physical practice in group treatment applied to subjects with Parkinson's disease. Neurorehabil Neural Repair 21:68-75.  Back to cited text no. 48
    
49.Twitchell TE (1965) Variations and abnormalities of motor development. Phys Ther 45:424-430.  Back to cited text no. 49
    
50.Ward N (2011) Assessment of cortical reorganisation for hand function after stroke. J Physiol 589:5625-5632.  Back to cited text no. 50
    
51.Ward NS (2005) Plasticity and the functional reorganization of the human brain. Int J Psychophysiol 58:158-161.  Back to cited text no. 51
    
52.Weiller C, May A, Sach M, Buhmann C, Rijntjes M (2006) Role of functional imaging in neurological disorders. J Magn Reson Imaging 23:840-850.  Back to cited text no. 52
    
53.Ziemka-Nalecz M, Zalewska T (2012) Endogenous neurogenesis induced by ischemic brain injury or neurodegenerative diseases in adults. Acta Neurobiol Exp (Wars) 72:309-324.  Back to cited text no. 53
    


    Figures

  [Figure 1], [Figure 2], [Figure 3], [Figure 4], [Figure 5]
 
 
    Tables

  [Table 1], [Table 2], [Table 3]


This article has been cited by
1 The Effects of Combined Low Frequency Repetitive Transcranial Magnetic Stimulation and Motor Imagery on Upper Extremity Motor Recovery Following Stroke
Wenxiu Pan,Pu Wang,Xiaohui Song,Xiaopei Sun,Qing Xie
Frontiers in Neurology. 2019; 10
[Pubmed] | [DOI]
2 Efficacy of motor imagery additional to motor-based therapy in the recovery of motor function of the upper limb in post-stroke individuals: a systematic review
Tácia Cotinguiba Machado,Adriani Andrade Carregosa,Matheus S. Santos,Nildo Manoel da Silva Ribeiro,Ailton Melo
Topics in Stroke Rehabilitation. 2019; : 1
[Pubmed] | [DOI]
3 Mental Practice Ability Among Stroke Survivors: Investigation of Gender and Age
Vera Storm,Till Utesch
Frontiers in Psychology. 2019; 10
[Pubmed] | [DOI]
4 Combined somatosensory and motor training to improve upper limb function following stroke: a systematic scoping review
Urvashy Gopaul,Leeanne Carey,Robin Callister,Michael Nilsson,Paulette van Vliet
Physical Therapy Reviews. 2019; : 1
[Pubmed] | [DOI]
5 Correlated Resting-State Functional MRI Activity of Frontostriatal, Thalamic, Temporal, and Cerebellar Brain Regions Differentiates Stroke Survivors with High Compared to Low Depressive Symptom Scores
Peter Goodin,Gemma Lamp,Rishma Vidyasagar,Alan Connelly,Stephen Rose,Bruce C. V. Campbell,Tamara Tse,Henry Ma,David Howells,Graeme J. Hankey,Stephen Davis,Geoffrey Donnan,Leeanne M. Carey
Neural Plasticity. 2019; 2019: 1
[Pubmed] | [DOI]
6 The Reorganization of Resting-State Brain Networks Associated With Motor Imagery Training in Chronic Stroke Patients
Hewei Wang,Guojun Xu,Xu Wang,Changhui Sun,Bing Zhu,Mingxia Fan,Jie Jia,Xiaoli Guo,Limin Sun
IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2019; 27(10): 2237
[Pubmed] | [DOI]
7 Re-learning to be different: Increased neural differentiation supports post-stroke language recovery
Jeremy J. Purcell,Robert W. Wiley,Brenda Rapp
NeuroImage. 2019; : 116145
[Pubmed] | [DOI]
8 Change in Reciprocal Inhibition of the Forearm with Motor Imagery among Patients with Chronic Stroke
Michiyuki Kawakami,Kohei Okuyama,Yoko Takahashi,Miho Hiramoto,Atsuko Nishimura,Junichi Ushiba,Toshiyuki Fujiwara,Meigen Liu
Neural Plasticity. 2018; 2018: 1
[Pubmed] | [DOI]
9 COMbined Physical and somatoSEnsory training after stroke: Development and description of a novel intervention to improve upper limb function
Urvashy Gopaul,Paulette van Vliet,Robin Callister,Michael Nilsson,Leeanne Carey
Physiotherapy Research International. 2018; : e1748
[Pubmed] | [DOI]
10 Motor imagery training induces changes in brain neural networks in stroke patients
Fang Li,Tong Zhang,Bing-Jie Li,Wei Zhang,Jun Zhao,Lu-Ping Song
Neural Regeneration Research. 2018; 13(10): 1771
[Pubmed] | [DOI]
11 Anatomical Parameters of tDCS to Modulate the Motor System after Stroke: A Review
Stephanie Lefebvre,Sook-Lei Liew
Frontiers in Neurology. 2017; 8
[Pubmed] | [DOI]
12 Combined Action Observation and Motor Imagery Neurofeedback for Modulation of Brain Activity
Christopher L. Friesen,Timothy Bardouille,Heather F. Neyedli,Shaun G. Boe
Frontiers in Human Neuroscience. 2017; 10
[Pubmed] | [DOI]
13 Somatosensory cortex excitability changes due to differences in instruction conditions of motor imagery
Takashi Hasegawa,Hironori Miyata,Keita Nishi,Akira Sagari,Takefumi Moriuchi,Takashi Matsuo,Takayuki Tabira,Toshio Higashi
Somatosensory & Motor Research. 2017; : 1
[Pubmed] | [DOI]
14 Supplementary motor area deactivation impacts the recovery of hand function from severe peripheral nerve injury
Ye-chen Lu,Han-qiu Liu,Xu-yun Hua,Yun-dong Shen,Wen-dong Xu,Jian-guang Xu,Yu-dong Gu
Neural Regeneration Research. 2016; 11(4): 670
[Pubmed] | [DOI]
15 The effect of different training modalities on physical fitness in women over 50 years of age
Lucas Melo Neves,Tiego Aparecido Diniz,Fabrício Eduardo Rossi,Ana Claudia de Souza Fortaleza,Eduardo Tomoyoshi Horimoto,Vanessa de Oliveira Geraldo,Vanessa Ribeiro dos Santos,Ismael Forte Freitas Júnior
Motriz: Revista de Educação Física. 2016; 22(4): 319
[Pubmed] | [DOI]
16 Multiple Integrated Complementary Healing Approaches: Energetics & Light for bone
Michael G. Gray,Brett R. Lackey,Evelyn F. Patrick,Sandra L. Gray,Susan G. Hurley
Medical Hypotheses. 2016; 86: 18
[Pubmed] | [DOI]
17 The effect of mirror therapy on balance ability of subacute stroke patients
Myoung-Kwon Kim,Sang-Gu Ji,Hyun-Gyu Cha
Hong Kong Physiotherapy Journal. 2016; 34: 27
[Pubmed] | [DOI]
18 An efficacy study on improving balance and gait in subacute stroke patients by balance training with additional motor imagery: a pilot study
Young-Hyeon Bae,YoungJun Ko,HyunGeun Ha,So Yeon Ahn,WanHee Lee,Suk Min Lee
Journal of Physical Therapy Science. 2015; 27(10): 3245
[Pubmed] | [DOI]
19 Analysis of Time-Dependent Brain Network on Active and MI Tasks for Chronic Stroke Patients
Da-Hye Kim,Leahyun Kim,Wanjoo Park,Won Hyuk Chang,Yun-Hee Kim,Seong-Whan Lee,Gyu Hyun Kwon,Michal Zochowski
PLOS ONE. 2015; 10(12): e0139441
[Pubmed] | [DOI]



 

Top
 
 
  Search
 
Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Access Statistics
Email Alert *
Add to My List *
* Registration required (free)

 
  In this article
Abstract
Introduction
Subjects and Methods
Results
Discussion
References
Article Figures
Article Tables

 Article Access Statistics
    Viewed2122    
    Printed21    
    Emailed0    
    PDF Downloaded591    
    Comments [Add]    
    Cited by others 19    

Recommend this journal


[TAG2]
[TAG3]
[TAG4]