• Users Online: 898
  • Home
  • Print this page
  • Email this page


 
 Table of Contents  
INVITED REVIEW
Year : 2017  |  Volume : 12  |  Issue : 1  |  Page : 7-12

Therapeutic potential of brain-derived neurotrophic factor (BDNF) and a small molecular mimics of BDNF for traumatic brain injury


Department of Neurosurgery, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA

Date of Acceptance16-Jan-2017
Date of Web Publication6-Feb-2017

Correspondence Address:
Dong Sun
Department of Neurosurgery, School of Medicine, Virginia Commonwealth University, Richmond, VA
USA
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/1673-5374.198964

Rights and Permissions
  Abstract 

Traumatic brain injury (TBI) is a major health problem worldwide. Following primary mechanical insults, a cascade of secondary injuries often leads to further neural tissue loss. Thus far there is no cure to rescue the damaged neural tissue. Current therapeutic strategies primarily target the secondary injuries focusing on neuroprotection and neuroregeneration. The neurotrophin brain-derived neurotrophic factor (BDNF) has significant effect in both aspects, promoting neuronal survival, synaptic plasticity and neurogenesis. Recently, the flavonoid 7,8-dihydroxyflavone (7,8-DHF), a small TrkB agonist that mimics BDNF function, has shown similar effects as BDNF in promoting neuronal survival and regeneration following TBI. Compared to BDNF, 7,8-DHF has a longer half-life and much smaller molecular size, capable of penetrating the blood-brain barrier, which makes it possible for non-invasive clinical application. In this review, we summarize functions of the BDNF/TrkB signaling pathway and studies examining the potential of BDNF and 7,8-DHF as a therapy for TBI.

Keywords: 7,8-dihydroxyflavone; brain-derived neurotrophic factor; tropomyosin related kinase B (TrkB) receptor; traumatic brain injury; neuroregeneration; neuroprotection


How to cite this article:
Wurzelmann M, Romeika J, Sun D. Therapeutic potential of brain-derived neurotrophic factor (BDNF) and a small molecular mimics of BDNF for traumatic brain injury. Neural Regen Res 2017;12:7-12

How to cite this URL:
Wurzelmann M, Romeika J, Sun D. Therapeutic potential of brain-derived neurotrophic factor (BDNF) and a small molecular mimics of BDNF for traumatic brain injury. Neural Regen Res [serial online] 2017 [cited 2018 Jun 21];12:7-12. Available from: http://www.nrronline.org/text.asp?2017/12/1/7/198964


  Introduction Top


Traumatic brain injury (TBI) is a global public health issue with few treatment options available (Chauhan, 2014). With approximately 10 million people affected by TBI annually, it is a major cause of death and disability worldwide, and the World Health Organization projects that it will surpass the mortality and morbidity of many diseases by the year 2020. It is difficult to quantify the full magnitude of TBI, as multiple factors influence it being underreported, including mild head trauma, the most common brain injury that is often not reported and not physically observed, but may lead to memory or cognitive deficits at a later time (Hyder et al., 2007).

TBI is the loss or alteration of brain function generated by an external force (Menon et al., 2010). TBI can be diagnosed with symptoms and signs that are temporally close to the external insult, including damage to blood vessels, axons, neurons, and glia, which are considered primary damages. Following primary injury, which refers to the immediate death of cells on impact from the external disruption, secondary injury is the result of a series of biochemical changes in the surrounding area of the primary injury that induces further tissue damage leading to functional deficits (Stoica and Faden, 2010).

Thus far, there is no effective treatment for TBI. Current therapies are primarily focused on reducing the extent of secondary insult and enhancing the regeneration process. Strategies that have neuroprotective effects, salvaging the injured brain tissue in the early stages post-injury and promoting regeneration at the recovery stage, are desirable. The brain-derived neurotrophic factor (BDNF) and its high affinity receptor tropomyosin-receptor-kinase B (TrkB) play a critical role in promoting neuronal survival, plasticity, and memory function (Park and Poo, 2013; Leal et al., 2015). Therapeutic potential of BDNF and its mimics have been reported in many neurological conditions including TBI. This review summarizes the signaling pathway of BDNF/TrkB and studies targeting this signaling pathway for treating TBI.


  Neurotrophins and the Receptors Top


Neurotrophins are endogenous peptides secreted from neuronal and glial cells, and are associated with regulating the function, survival, and development of individual cells and neuronal networks across the entire brain. More specifically, neurotrophins regulate synaptic plasticity, protect neurons from oxidative stress and apoptosis, and can stimulate neurogenesis (Skaper et al., 1998; Leal et al., 2015; Kuipers et al., 2016). The neurotrophin family members include nerve growth factor (NGF), BDNF, neurotrophin-3 (NT-3), and neurotrophin-4/5 (NT-4/5), which are classified together based on their structural similarity to NGF, the first neurotrophin discovered (Skaper, 2012).

Neurotrophins are able to exert their neuroprotective effects through the transmembrane receptors they bind to and the signaling cascades they initiate. There are two main classes of transmembrane neurotrophin receptors, which include the Trk family of tyrosine kinase receptors, TrkA, TrkB, and TrkC, and the p75 neurotrophin receptor (p75NTR), a member of the tumor necrosis-factor family (Marco-Salazar et al., 2014). NGF preferentially binds to TrkA, BDNF and NT-4/5 to TrkB, and NT-3 to TrkC, all with high affinity, while each of these neurotrophins binds with low affinity to p75NTR receptors (Skaper, 2008; Marco-Salazar et al., 2014). Additionally, p75NTR contributes to proper Trk receptor function, and promotes ligand binding of neurotrophins with their correct Trk receptor (Skaper, 2012). Once bound to their Trk receptors, neurotrophins activate a cascade of events through Ras, phosphatidylinositol 3-kinase (PI3K), phospholipase-Cγ (PLCγ), and mitogen-activated protein kinase (MAPK) signaling pathways (Skaper, 2008).


  BDNF and its Downstream Pathways Top


Among neurotrophins, BDNF is the most widely studied due to its potent effects at synapses and wide expression in the brain. Two different classes of receptors are responsible for mediating BDNF signaling: p75NTR and TrkB (Lu et al., 2008). BDNF has a Kd = 9.9 nM for the TrkB receptor and a Kd ~1.0 nM for the p75NTR demonstrating its binding selectivity and affinity for each of the receptor types (Bernard-Gauthier et al., 2013). It is through its high affinity for TrkB that BDNF is able to provide neuronal survival, neuronal plasticity, and neurogenesis (Lu et al., 2008). The p75NTR receptor is more associated with apoptosis. ProBDNF binds to the p75NTR receptor while the mature form of BDNF has a high affinity to TrkB (Bollen et al., 2013). However, the mature form of BDNF can bind to p75NTR receptor when there are high concentrations of BDNF (Boyd and Gordon, 2001). Both of the BDNF receptors can be found in the same cell, coordinating and modulating neuronal responses. Furthermore, the signals generated by each receptor can augment each other or go against each other, fluctuating between a enhancing and suppressing relationship (Kaplan and Miller, 2007).

Upon binding to the TrkB receptor, BDNF induces dimerization and autophosphorylation of the receptor, which causes internalization of the TrkB receptor and initiates intracellular signaling cascades (Levine et al., 1996) ([Figure 1]). These signaling cascades include the phosphatidylinositol-3-kinase (PI3K) pathway, the PLCγ pathway, and the MAPK pathway. The PI3K pathway activates protein kinase B (Akt), which ultimately promotes cell survival by inhibiting Bad and consequently allowing the expression of anti-apoptotic proteins, such as BcL2 (Yoshii and Constantine-Paton, 2010). Phosphorylation of Akt at the proper site also results in the suppression of pro-apoptotic proteins, pro-caspase-9 and Forkhead (Kaplan and Miller, 2007). Upregulated BcL2 levels are correlated with positive outcomes, such as attenuated cell death and a better prognosis (Nathoo et al., 2004). The PLCγ pathway leads to the release of intracellular calcium stores via activation of the inositol triphosphate (IP3) receptor, and helps to increase calmodulin kinase (CamK) activity, and thus synaptic plasticity via the transcription factor CREB (cyclicAMP response element binding protein). The MAPK pathway, also referred to as extracellular related signal kinase (ERK) pathway, aids in cell growth and differentiation. A PLCγ mediated response is likely responsible for quick, short-term actions, while MAPK and PI3K pathways involve long-term transcriptional effects (Yoshii and Constantine-Paton, 2010).
Figure 1: The activation pathways of the TrkB receptor.
The binding of BDNF or 7,8-DHF leads to auto-phosphorylation of the intracellular domain of the receptor and activation of the downstream pathways. 1) The MAPK pathway. Activation of this pathway stimulates anti-apoptotic proteins, including BcL2 and cAMP response-element binding protein (CREB). CREB is required by neurotrophin mediated neuronal survival. Activation of the MAPK pathway also stimulates extracellular signal related kinase (ERK), which induces phosphorylation of Synapsin I mediating the clustering and release of synaptic vesicles. 2) Activation of the PI3K pathway, which activates Akt. Akt inhibits apopotosis by inhibiting activation of antiapoptotic proteins including Bad, Pro-caspase 9 and Forkhead. PI3K = phosphatidylinositol 3 kinase; Akt = Protein Kinase B, PKB; Bad = BcL2 associated death promoter. 3) The Phospholipase C-gamma (PLCγ) pathway. PLC-γ can lead to an increase in intracellular calcium levels, which activates the calcium/calmodulin pathway leading to CREB activation. 7,8-DHF: 7,8-Dihydroxyflavone; BDNF: brain-derived neurotrophic factor; MAPK: mitogen-activated protein kinase; TrkB: tropomyosin related kinase B.


Click here to view



  Function of BDNF and TrkB Pathways in the Central Nervous System Top


BDNF and TrkB pathway have profound effects in regulating cell survival and other biological processes. BDNF is important for neurite and axonal growth (Yoshii and Constantine-Paton, 2010), and is required for the survival and development of dopaminergic, GABAergic, serotonergic, and cholinergic neurons (Pillai, 2008).

Activation of the TrkB pathways has been shown to improve cognition, and has also been correlated with an increase in synaptic density (Castello et al., 2014). BDNF and TrkB are upregulated in areas where there is neuronal plasticity occurring. Due to this relationship, BDNF is considered a molecular mediator in the function and structure of synaptic plasticity, and plays a pivotal role in memory formation as well as memory consolidation (Zeng et al., 2012). Even a disruption in the pathway that transports and produces BDNF can result in the clinical symptoms of deteriorating memory and cognitive dysfunction (Leal et al., 2015). Clinical studies have shown a causal relationship between lower levels of BDNF and cognitive declines observed in aging, schizophrenia, and Rett syndrome (Zuccato et al., 2011; Autry and Monteggia, 2012; Soares et al., 2016).

The cellular basis for learning and memory is considered to be at the synapses within the hippocampus. BDNF is a key molecule which controls neuronal differentiation and survival, synaptic formation and plasticity, as well as activity-dependent changes in synaptic structure and function (Park and Poo, 2013). Long-term potentiation (LTP) is a specific form of plasticity that occurs in the hippocampus and is the cellular basis of learning and memory. BDNF is a major regulator for the induction and maintenance of LTP in the hippocampus and other brain regions (Leal et al., 2014, 2015). Studies have established that adult neurogenesis in the hippocampus is involved in learning and memory functions (Aimone et al., 2006; Deng et al., 2009). BDNF and TrkB signaling influences adult neurogenesis by mediating neuronal differentiation and survival of newly generated neurons (Scharfman et al., 2005; Chan et al., 2008; Gao and Chen, 2009). The influence of BNDF and TrkB signaling on neurogenesis likely contributes to its function on learning and memory.


  BDNF and Traumatic Brain Injury Top


By virtue of its role in neuronal differentiation, survival, and plasticity, it is no surprise that BDNF plays an important role following TBI. In response to TBI, the mRNA expression level of BDNF is transiently and significantly increased. Studies have reported that within hours post-injury, the expression level of BDNF mRNA is significantly upregulated in the injured cortex and in the hippocampus (Yang et al., 1996). The level of BDNF declines at 24 hours post-injury, and is no longer significant at 36 hours post-injury (Oyesiku et al., 1999). Following injury, the mRNA expression level of TrkB receptor is also transiently upregulated in the hippocampus and dentate gyrus (Merlio et al., 1993). This transient surge of BDNF and its receptor following TBI suggests that BDNF acts as an endogenous neuroprotective response attempting to attenuate secondary cell damage following TBI (Mattson and Scheff, 1994).

The importance of the BDNF/TrkB signaling pathway in regulating CNS function has led to many studies exploring the therapeutic potential of BDNF/TrkB for various neurological diseases, including TBI. The therapeutic potential of BDNF is restricted due to its short half-life (< 10 minutes) and inability to cross the blood-brain barrier (BBB) because of its large size (27 kDa) (Price et al., 2007). Thus far, direct application of BDNF for TBI has not been efficacious in experimental TBI studies. However, limited studies have shown when delivered indirectly, BDNF can significantly improve functional recovery of injured animals. In a recent study, poly(lactic-co-glycolic acid) nanoparticles coated with surfactant poloxamer 188 was used to deliver BDNF to the injured brain by receptor-mediated transcytosis (Khalin et al., 2016). Following intravenous injection of nanoparticle-bounded BDNF, increased BDNF levels were found in the brain, and animals had improved neurological and cognitive functions following a weight-drop injury in mice (Khalin et al., 2016).


  The Molecule 7,8-Dihydroxyflavone Top


Compared to BDNF, small compounds such as TrkB agonists that mimic BDNF's neurotrophic signaling without its pharmacokinetic barriers may have greater therapeutic potential. In an effort to search for small molecules mimicking BDNF function, Jang and colleagues conducted a series of cell-based TrkB receptor-dependent survival assays to screen chemical libraries and resulted in the discovery of a flavone derivative, 7,8-dihydroxyflavone (7,8-DHF) (Jang et al., 2010). 7, 8-DHF is a polyphenolic compound found in fruits and vegetables, which mimics BDNF functions due to its ability to bind to TrkB (Chen et al., 2011; Zeng et al., 2012). 7,8-DHF specifically binds to the receptor extracellular domain of TrkB with high affinity, and induces the receptor dimerization and autophosphorylation (Jang et al., 2010), initiating activation of the downstream signaling pathways as described above in BDNF/TrkB pathway ([Figure 1]).

Compared to BDNF, 7, 8-DHF-induced TrkB receptor phosphorylation lasts much longer. Additionally, TrkB receptors activated by 7,8-DHF are not degraded, but instead are recycled to the cell surface after internalization, as opposed to BDNF activated TrkB receptors, which are tagged for ubiquitination and degraded after internalization (Liu et al., 2014). Internalization is a vital part of initiating signal transduction for the neurotrophin-Trk complex. 7,8-DHF can successfully mimic BDNF-TrkB internalization in neurons, producing endosomes with TrkB as early as 10 minutes, as BDNF does, and producing a more robust endocytic response than BDNF at 60 minutes (Liu et al., 2014).

7,8-DHF has a longer half-life compared to BDNF (134 minutes in plasma following 50 mg/kg oral administration versus less than 10 minutes) (Zhang et al., 2014). It is considerably smaller than BDNF, with a molecular size of 254 Da compared to BDNF's 27 kDa, which allows for greater permeability crossing the BBB (Liu et al., 2014). It is orally bioactive with an oral bioavailability of 5% (Zhang et al., 2014; Liu et al., 2016).

7,8-DHF is a selective TrkB agonist which is able to activate TrkB receptors without binding to p75 receptors, initiating signaling pathways that only influence neuroprotection, plasticity, and neurogenesis without activating the apoptotic processes (Bollen et al., 2013). The binding of 7,8-DHF to the TrkB extracellular domain activates signal cascades that induce autophosphorylation of TrkB, leading to activation of MAPK, PI3/Akt, and ERK1/2 signal pathways in a time frame that is comparable to BDNF and in a dose-dependent manner (Liu et al., 2010; Jiang et al., 2013).


  Therapeutic Potential of 7,8-DHF for TBI Top


Since its discovery, 7,8-DHF has been documented in providing neuroprotection and neuroplasticity in animal models of various neurological diseases and disorders including TBI. In particular, the beneficial effect of 7,8-DHF has been observed in animal models of Parkinson's disease (Sconce et al., 2015), Alzheimer's disease (Castello et al., 2014; Zhang et al., 2014), amyotrophic lateral sclerosis (Korkmaz et al., 2014), Huntington's disease (Jiang et al., 2013), stroke (Wang et al., 2014), depression and Rett syndrome (Liu et al., 2010), and TBI (Wu et al., 2014; Agrawal et al., 2015).

In recent years, the therapeutic potential of 7,8-DHF for TBI has been explored in several types of TBI models, and the underlying mechanisms were explored as well. In an in vitro stretch injury model, 7,8-DHF treatment can attenuate stretch injury induced cytotoxicity and apoptosis in cultured primary neurons (Wu et al., 2014). In a mouse focal controlled cortical impact (CCI) injury model, intraperitoneal injection of 7,8-DHF at the dose of 20 mg/kg beginning at 10 minutes following moderate CCI injury, and subsequent single daily doses for 3 days had significant beneficial effects including reducing brain edema, cortical contusion volume, neuronal cell death and apoptosis, as well as improving motor functions of injured animals (Wu et al., 2014). The neuroprotective effect of 7,8-DHF was also observed when the initial treatment was delayedstarting at 3 hours following TBI as demonstrated by reduced cortical lesion volumes (Wu et al., 2014).

In a fluid percussion injury (FPI) rat model, animals that received 7,8-DHF following injury at the single daily dose of 5 mg/kg for 7 consecutive days had enhanced learning and memory functions (Agrawal et al., 2015). In both the CCI and FPI studies, enhanced phosphorylation of TrkB receptor and activation of downstream signaling proteins such as Akt and CREB was observed, confirming that the protective effect of 7,8-DHF for TBI was through activation of TrkB receptor (Wu et al., 2014; Agrawal et al., 2015).

At the dose of 5 mg/kg giving at 1, 24, 48 and 72 hours following TBI in a mouse CCI model, 7,8-DHF can also prevent dendritic degeneration of cortical neurons and improve motor functional deficits (Zhao et al., 2016a). Pretreatment of 7,8-DHF before TBI in the mouse CCI model can enhance neuroprotection by reducing injury-induced neuronal cell death of immature neurons in the dentate gyrus of the hippocampus (Chen et al., 2015). When given post-TBI, 7,8-DHF also protects newly generated immature neurons in the dentate gyrus of the hippocampus from injury-induced cell death and promotes their dendritic development in a mouse CCI model (Zhao et al., 2016b).

Our lab has recently found that in a rat CCI model, 5- day treatment of 7,8-DHF at the dose of 5 mg/kg started either at 1 hour or 2 days post-injury could provide protective effect with reduced lesion volume and neuronal cell loss in the hippocampus, as well as improved motor and cognitive functions (unpublished data).

Apart from direct neuronal function, 7,8-DHF has also demonstrated a role in modulating inflammation. In cultured murine microglial cells, 7,8-DHF can inhibit transcription activities of nuclear factor-κB and MAPK signaling, and thus reduce the production of iNOS (inducible nitric oxide synthase), COX-2 (cyclooxygenase-2), tumor necrosis factor-α and interleukin-1β following lipopolysaccharide-stimulation (Park et al., 2014). This anti-inflammation effect of 7,8-DHF likely contributes to its beneficial effects following TBI.


  Conclusion and Perspectives Top


In summary, 7,8-DHF has proven a viable therapy option for TBI and multiple degenerative neurological disorders. Through its activation of the TrkB receptor and downstream signaling pathways, it promotes survival and dendritic integrity of neurons, reduces injury-induced tissue damage, and ameliorates motor and cognitive functional impairments. Its ability to cross the BBB and broad therapeutic potential in the CNS makes it a valuable compound deserving further examination for its application in TBI and other neurological diseases in clinic.[53]





 
  References Top

1.
Agrawal R, Noble E, Tyagi E, Zhuang Y, Ying Z, Gomez-Pinilla F (2015) Flavonoid derivative 7,8-DHF attenuates TBI pathology via TrkB activation. Biochim Biophys Acta 1852:862-872.  Back to cited text no. 1
    
2.
Aimone JB, Wiles J, Gage FH (2006) Potential role for adult neurogenesis in the encoding of time in new memories. Nat Neurosci 9:723-727.  Back to cited text no. 2
    
3.
Autry AE, Monteggia LM (2012) Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol Rev 64:238-258.  Back to cited text no. 3
    
4.
Bernard-Gauthier V, Boudjemeline M, Rosa-Neto P, Thiel A, Schirrmacher R (2013) Towards tropomyosin-related kinase B (TrkB) receptor ligands for brain imaging with PET: radiosynthesis and evaluation of 2-(4-[(18)F]fluorophenyl)-7,8-dihydroxy-4H-chromen-4-one and 2-(4-([N-methyl-(11)C]-dimethylamino)phenyl)-7,8-dihydroxy-4H-chromen-4-one. Bioorg Med Chem 21:7816-7829.  Back to cited text no. 4
    
5.
Bollen E, Vanmierlo T, Akkerman S, Wouters C, Steinbusch HM, Prickaerts J (2013) 7,8-Dihydroxyflavone improves memory consolidation processes in rats and mice. Behav Brain Res 257:8-12.  Back to cited text no. 5
    
6.
Boyd JG, Gordon T (2001) The neurotrophin receptors, trkB and p75, differentially regulate motor axonal regeneration. J Neurobiol 49:314-325.  Back to cited text no. 6
    
7.
Castello NA, Nguyen MH, Tran JD, Cheng D, Green KN, LaFerla FM (2014) 7,8-Dihydroxyflavone, a small molecule TrkB agonist, improves spatial memory and increases thin spine density in a mouse model of Alzheimer disease-like neuronal loss. PLoS One 9:e91453.  Back to cited text no. 7
    
8.
Chan JP, Cordeira J, Calderon GA, Iyer LK, Rios M (2008) Depletion of central BDNF in mice impedes terminal differentiation of new granule neurons in the adult hippocampus. Mol Cell Neurosci 39:372-383.  Back to cited text no. 8
    
9.
Chauhan NB (2014) Chronic neurodegenerative consequences of traumatic brain injury. Restor Neurol Neurosci 32:337-365.  Back to cited text no. 9
    
10.
Chen J, Chua KW, Chua CC, Yu H, Pei A, Chua BH, Hamdy RC, Xu X, Liu CF (2011) Antioxidant activity of 7,8-dihydroxyflavone provides neuroprotection against glutamate-induced toxicity. Neurosci Lett 499:181-185.  Back to cited text no. 10
    
11.
Chen L, Gao X, Zhao S, Hu W, Chen J (2015) The small-molecule trkb agonist 7,8-dihydroxyflavone decreases hippocampal newborn neuron death after traumatic brain injury. J Neuropathol Exp Neurol 74:557-567.  Back to cited text no. 11
    
12.
Deng W, Saxe MD, Gallina IS, Gage FH (2009) Adult-born hippocampal dentate granule cells undergoing maturation modulate learning and memory in the brain. J Neurosci 29:13532-13542.  Back to cited text no. 12
    
13.
Gao X, Chen J (2009) Conditional knockout of brain-derived neurotrophic factor in the hippocampus increases death of adult-born immature neurons following traumatic brain injury. J Neurotrauma 26:1325-1335.  Back to cited text no. 13
    
14.
Hyder AA, Wunderlich CA, Puvanachandra P, Gururaj G, Kobusingye OC (2007) The impact of traumatic brain injuries: a global perspective. NeuroRehabilitation 22:341-353.  Back to cited text no. 14
    
15.
Jang SW, Liu X, Yepes M, Shepherd KR, Miller GW, Liu Y, Wilson WD, Xiao G, Blanchi B, Sun YE, Ye K (2010) A selective TrkB agonist with potent neurotrophic activities by 7,8-dihydroxyflavone. Proc Natl Acad Sci U S A 107:2687-2692.  Back to cited text no. 15
    
16.
Jiang M, Peng Q, Liu X, Jin J, Hou Z, Zhang J, Mori S, Ross CA, Ye K, Duan W (2013) Small-molecule TrkB receptor agonists improve motor function and extend survival in a mouse model of Huntington's disease. Hum Mol Genet 22:2462-2470.  Back to cited text no. 16
    
17.
Kaplan DR, Miller FD (2007) Developing with BDNF: a moving experience. Neuron 55:1-2.  Back to cited text no. 17
    
18.
Khalin I, Alyautdin R, Wong TW, Gnanou J, Kocherga G, Kreuter J (2016) Brain-derived neurotrophic factor delivered to the brain using poly (lactide-co-glycolide) nanoparticles improves neurological and cognitive outcome in mice with traumatic brain injury. Drug Deliv 23:3520-3528.  Back to cited text no. 18
    
19.
Korkmaz OT, Aytan N, Carreras I, Choi JK, Kowall NW, Jenkins BG, Dedeoglu A (2014) 7,8-Dihydroxyflavone improves motor performance and enhances lower motor neuronal survival in a mouse model of amyotrophic lateral sclerosis. Neurosci Lett 566:286-291.  Back to cited text no. 19
    
20.
Kuipers SD, Trentani A, Tiron A, Mao X, Kuhl D, Bramham CR (2016) BDNF-induced LTP is associated with rapid Arc/Arg3.1-dependent enhancement in adult hippocampal neurogenesis. Sci Rep 6:21222.  Back to cited text no. 20
    
21.
Leal G, Afonso PM, Salazar IL, Duarte CB (2015) Regulation of hippocampal synaptic plasticity by BDNF. Brain Res 1621:82-101.  Back to cited text no. 21
    
22.
Leal G, Comprido D, Duarte CB (2014) BDNF-induced local protein synthesis and synaptic plasticity. Neuropharmacology 76 Pt C:639-656.  Back to cited text no. 22
    
23.
Levine ES, Dreyfus CF, Black IB, Plummer MR (1996) Selective role for trkB neurotrophin receptors in rapid modulation of hippocampal synaptic transmission. Brain Res Mol Brain Res 38:300-303.  Back to cited text no. 23
    
24.
Liu C, Chan CB, Ye K (2016) 7,8-Dihydroxyflavone, a small molecular TrkB agonist, is useful for treating various BDNF-implicated human disorders. Transl Neurodegener 5:2.  Back to cited text no. 24
    
25.
Liu X, Chan CB, Jang SW, Pradoldej S, Huang J, He K, Phun LH, France S, Xiao G, Jia Y, Luo HR, Ye K (2010) A synthetic 7,8-dihydroxyflavone derivative promotes neurogenesis and exhibits potent antidepressant effect. J Med Chem 53:8274-8286.  Back to cited text no. 25
    
26.
Liu X, Obianyo O, Chan CB, Huang J, Xue S, Yang JJ, Zeng F, Goodman M, Ye K (2014) Biochemical and biophysical investigation of the brain-derived neurotrophic factor mimetic 7,8-dihydroxyflavone in the binding and activation of the TrkB receptor. J Biol Chem 289:27571-27584.  Back to cited text no. 26
    
27.
Lu Y, Christian K, Lu B (2008) BDNF: a key regulator for protein synthesis-dependent LTP and long-term memory? Neurobiol Learn Mem 89:312-323.  Back to cited text no. 27
    
28.
Marco-Salazar P, Marquez M, Fondevila D, Rabanal RM, Torres JM, Pumarola M, Vidal E (2014) Mapping of neurotrophins and their receptors in the adult mouse brain and their role in the pathogenesis of a transgenic murine model of bovine spongiform encephalopathy. J Comp Pathol 150:449-462.  Back to cited text no. 28
    
29.
Mattson MP, Scheff SW (1994) Endogenous neuroprotection factors and traumatic brain injury: mechanisms of action and implications for therapy. J Neurotrauma 11:3-33.  Back to cited text no. 29
    
30.
Merlio JP, Ernfors P, Kokaia Z, Middlemas DS, Bengzon J, Kokaia M, Smith ML, Siesjo BK, Hunter T, Lindvall O, Persson H (1993) Increased production of the TrkB protein tyrosine kinase receptor after brain insults. Neuron 10:151-164.  Back to cited text no. 30
    
31.
Nathoo N, Narotam PK, Agrawal DK, Connolly CA, van Dellen JR, Barnett GH, Chetty R (2004) Influence of apoptosis on neurological outcome following traumatic cerebral contusion. J Neurosurg 101:233-240.  Back to cited text no. 31
    
32.
Oyesiku NM, Evans CO, Houston S, Darrell RS, Smith JS, Fulop ZL, Dixon CE, Stein DG (1999) Regional changes in the expression of neurotrophic factors and their receptors following acute traumatic brain injury in the adult rat brain. Brain Res 833:161-172.  Back to cited text no. 32
    
33.
Park H, Poo MM (2013) Neurotrophin regulation of neural circuit development and function. Nat Rev Neurosci 14:7-23.  Back to cited text no. 33
    
34.
Park HY, Park C, Hwang HJ, Kim BW, Kim GY, Kim CM, Kim ND, Choi YH (2014) 7,8-Dihydroxyflavone attenuates the release of pro-inflammatory mediators and cytokines in lipopolysaccharide-stimulated BV2 microglial cells through the suppression of the NF-kappaB and MAPK signaling pathways. Int J Mol Med 33:1027-1034.  Back to cited text no. 34
    
35.
Pillai A (2008) Brain-derived neurotropic factor/TrkB signaling in the pathogenesis and novel pharmacotherapy of schizophrenia. Neurosignals 16:183-193.  Back to cited text no. 35
    
36.
Price RD, Milne SA, Sharkey J, Matsuoka N (2007) Advances in small molecules promoting neurotrophic function. Pharmacol Ther 115:292-306.  Back to cited text no. 36
    
37.
Scharfman H, Goodman J, Macleod A, Phani S, Antonelli C, Croll S (2005) Increased neurogenesis and the ectopic granule cells after intrahippocampal BDNF infusion in adult rats. Exp Neurol 192:348-356.  Back to cited text no. 37
    
38.
Sconce MD, Churchill MJ, Moore C, Meshul CK (2015) Intervention with 7,8-dihydroxyflavone blocks further striatal terminal loss and restores motor deficits in a progressive mouse model of Parkinson's disease. Neuroscience 290:454-471.  Back to cited text no. 38
    
39.
Skaper SD (2008) The biology of neurotrophins, signalling pathways, and functional peptide mimetics of neurotrophins and their receptors. CNS Neurol Disord Drug Targets 7:46-62.  Back to cited text no. 39
    
40.
Skaper SD (2012) The neurotrophin family of neurotrophic factors: an overview. Methods Mol Biol 846:1-12.  Back to cited text no. 40
    
41.
Skaper SD, Floreani M, Negro A, Facci L, Giusti P (1998) Neurotrophins rescue cerebellar granule neurons from oxidative stress-mediated apoptotic death: selective involvement of phosphatidylinositol 3-kinase and the mitogen-activated protein kinase pathway. J Neurochem 70:1859-1868.  Back to cited text no. 41
    
42.
Soares AT, Andreazza AC, Rej S, Rajji TK, Gildengers AG, Lafer B, Young LT, Mulsant BH (2016) Decreased Brain-Derived Neurotrophic Factor in Older Adults with Bipolar Disorder. Am J Geriatr Psychiatry 24:596-601.  Back to cited text no. 42
    
43.
Stoica BA, Faden AI (2010) Cell death mechanisms and modulation in traumatic brain injury. Neurotherapeutics 7:3-12.  Back to cited text no. 43
    
44.
Wang B, Wu N, Liang F, Zhang S, Ni W, Cao Y, Xia D, Xi H (2014) 7,8-dihydroxyflavone, a small-molecule tropomyosin-related kinase B (TrkB) agonist, attenuates cerebral ischemia and reperfusion injury in rats. J Mol Histol 45:129-140.  Back to cited text no. 44
    
45.
Wu CH, Hung TH, Chen CC, Ke CH, Lee CY, Wang PY, Chen SF (2014) Post-injury treatment with 7,8-dihydroxyflavone, a TrkB receptor agonist, protects against experimental traumatic brain injury via PI3K/Akt signaling. PLoS One 9:e113397.  Back to cited text no. 45
    
46.
Yang K, Perez-Polo JR, Mu XS, Yan HQ, Xue JJ, Iwamoto Y, Liu SJ, Dixon CE, Hayes RL (1996) Increased expression of brain-derived neurotrophic factor but not neurotrophin-3 mRNA in rat brain after cortical impact injury. J Neurosci Res 44:157-164.  Back to cited text no. 46
    
47.
Yoshii A, Constantine-Paton M (2010) Postsynaptic BDNF-TrkB signaling in synapse maturation, plasticity, and disease. Dev Neurobiol 70:304-322.  Back to cited text no. 47
    
48.
Zeng Y, Liu Y, Wu M, Liu J, Hu Q (2012) Activation of TrkB by 7,8-dihydroxyflavone prevents fear memory defects and facilitates amygdalar synaptic plasticity in aging. J Alzheimers Dis 31:765-778.  Back to cited text no. 48
    
49.
Zhang Z, Liu X, Schroeder JP, Chan CB, Song M, Yu SP, Weinshenker D, Ye K (2014) 7,8-dihydroxyflavone prevents synaptic loss and memory deficits in a mouse model of Alzheimer's disease. Neuropsychopharmacology 39:638-650.  Back to cited text no. 49
    
50.
Zhao S, Gao X, Dong W, Chen J (2016a) The role of 7,8-dihydroxyflavone in preventing dendrite degeneration in cortex after moderate traumatic brain injury. Mol Neurobiol 53:1884-1895.  Back to cited text no. 50
    
51.
Zhao S, Yu A, Wang X, Gao X, Chen J (2016b) Post-injury treatment of 7,8-dihydroxyflavone promotes neurogenesis in the hippocampus of the adult mouse. J Neurotrauma 33:2055-2064.  Back to cited text no. 51
    
52.
Zuccato C, Marullo M, Vitali B, Tarditi A, Mariotti C, Valenza M, Lahiri N, Wild EJ, Sassone J, Ciammola A, Bachoud-Levi AC, Tabrizi SJ, Di DS, Cattaneo E (2011) Brain-derived neurotrophic factor in patients with Huntington's disease. PLoS One 6:e22966.  Back to cited text no. 52
    
53.
Wurzelmann et al. / Neural Regeneration Research. 2017;12(1):7-12. Wurzelmann et al. / Neural Regeneration Research. 2017;12(1):7-12.  Back to cited text no. 53
    

Author contributions: MW and DS wrote the article, and JR provided some information.
Conflicts of interest: None declared.


    Figures

  [Figure 1]


This article has been cited by
1 Low Vs. High Alcohol: Central Benefits Vs. Detriments
Yousef Tizabi,Bruk Getachew,Clifford L. Ferguson,Antonei B. Csoka,Karl M. Thompson,Alejandra Gomez-Paz,Jana Ruda-Kucerova,Robert E. Taylor
Neurotoxicity Research. 2018;
[Pubmed] | [DOI]
2 Peripheral Nerve Injury-Induced Astrocyte Activation in Spinal Ventral Horn Contributes to Nerve Regeneration
Changhui Qian,Dandan Tan,Xianghai Wang,Lixia Li,Jinkun Wen,Mengjie Pan,Yuanyuan Li,Wutian Wu,Jiasong Guo
Neural Plasticity. 2018; 2018: 1
[Pubmed] | [DOI]
3 Nano Pulsed Laser Therapy Is Neuroprotective In A Rat Model Of Blast-Induced Neurotrauma
Rinat O Esenaliev,Irene Y Petrov,Yuriy Petrov,Jutatip Guptarak,Deborah R. Boone,Emanuele Mocciaro,Harris` Weisz,Margaret O. Parsley,Stacy L Sell,Helen L. Hellmich,Jonathan M Ford,Connor Pogue,Douglas DeWitt,Donald S. Prough,Maria Adelaide Micci
Journal of Neurotrauma. 2018;
[Pubmed] | [DOI]
4 Posttraumatic Headache: Basic Mechanisms and Therapeutic Targets
Joshua Kamins,Andrew Charles
Headache: The Journal of Head and Face Pain. 2018;
[Pubmed] | [DOI]
5 Agathisflavone, a flavonoid derived from Poincianella pyramidalis (Tul.), enhances neuronal population and protects against glutamate excitotoxicity
Cleide dos Santos Souza,Maria Socorro grangeiro,Erica Patricia Lima Pereira,Cleonice Creusa dos Santos,Alessandra Bispo da Silva,Geraldo Pedral Sampaio,Daiana Dias Ribeiro Figueiredo,Jorge Mauricio David,Juceni Pereira David,Victor Diogenes Amaral da Silva,Arthur Morgan Butt,Silvia Lima Costa
NeuroToxicology. 2018;
[Pubmed] | [DOI]
6 Neuroprotective mechanisms and translational potential of therapeutic hypothermia in the treatment of ischemic stroke
JinHwan Lee,James Zhang,ShanPing Yu
Neural Regeneration Research. 2017; 12(3): 341
[Pubmed] | [DOI]



 

Top
 
 
  Search
 
Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Access Statistics
Email Alert *
Add to My List *
* Registration required (free)

 
  In this article
Abstract
Introduction
Neurotrophins an...
BDNF and its Dow...
Function of BDNF...
BDNF and Traumat...
The Molecule 7,8...
Therapeutic Pote...
Conclusion and P...
References
Article Figures

 Article Access Statistics
    Viewed1263    
    Printed3    
    Emailed0    
    PDF Downloaded474    
    Comments [Add]    
    Cited by others 6    

Recommend this journal


[TAG2]
[TAG3]
[TAG4]