• Users Online: 105
  • Home
  • Print this page
  • Email this page


 
 Table of Contents  
REVIEW
Year : 2018  |  Volume : 13  |  Issue : 8  |  Page : 1322-1326

Neuroplasticity, limbic neuroblastosis and neuro-regenerative disorders


1 Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu; Faculty Recharge Programme, University Grants Commission (UGC-FRP), New Delhi, India
2 Institute of Molecular Regenerative Medicine, Salzburg, Paracelsus Medical University; Spinal Cord Injury and Tissue Regeneration Center, Salzburg, Paracelsus Medical University, Salzburg, Austria

Date of Acceptance25-May-2018
Date of Web Publication10-Aug-2018

Correspondence Address:
Ludwig Aigner
Institute of Molecular Regenerative Medicine, Salzburg, Paracelsus Medical University; Spinal Cord Injury and Tissue Regeneration Center, Salzburg, Paracelsus Medical University, Salzburg, Austria
Austria
Mahesh Kandasamy
Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu; Faculty Recharge Programme, University Grants Commission (UGC-FRP), New Delhi
India
Login to access the Email id

Source of Support: This work was supported by the FWF Special Research Program (SFB) F44 (F4413-B23) “Cell Signaling in Chronic CNS Disorders”, and through funding from the European Union’s Seventh Framework Program (FP7/2007-2013) under grant agreements n° HEALTH -F2-2011-278850 (INMiND), n° HEALTH-F2-2011-279288 (IDEA), n° FP7-REGPOT-316120 (GlowBrain); a startup grant from the Faculty Recharge Programme, University Grants Commission (UGC-FRP), New Delhi, India (to MK); a research grant from DST-SERB, New Delhi, India (EEQ/2016/000639) (to MK); an Early Career Research Award (ECR/2016/000741) (to MK), Conflict of Interest: None


DOI: 10.4103/1673-5374.235214

Rights and Permissions
  Abstract 


The brain is a dynamic organ of the biological renaissance due to the existence of neuroplasticity. Adult neurogenesis abides by every aspect of neuroplasticity in the intact brain and contributes to neural regeneration in response to brain diseases and injury. The occurrence of adult neurogenesis has unequivocally been witnessed in human subjects, experimental and wildlife research including rodents, bats and cetaceans. Adult neurogenesis is a complex cellular process, in which generation of neuroblasts namely, neuroblastosis appears to be an integral process that occur in the limbic system and basal ganglia in addition to the canonical neurogenic niches. Neuroblastosis can be regulated by various factors and contributes to different functions of the brain. The characteristics and fate of neuroblasts have been found to be different among mammals regardless of their cognitive functions. Recently, regulation of neuroblastosis has been proposed for the sensorimotor interface and regenerative neuroplasticity of the adult brain. Hence, the understanding of adult neurogenesis at the functional level of neuroblasts requires a great scientific attention. Therefore, this mini-review provides a glimpse into the conceptual development of neuroplasticity, discusses the possible role of different types of neuroblasts and signifies neuroregenerative failure as a potential cause of dementia.

Keywords: neuroplasticity; adult neurogenesis; neuroblasts; reactive neuroblastosis; hippocampus; ultrasound; neuroregenerative disorders; neotrophy; echolocation


How to cite this article:
Kandasamy M, Aigner L. Neuroplasticity, limbic neuroblastosis and neuro-regenerative disorders. Neural Regen Res 2018;13:1322-6

How to cite this URL:
Kandasamy M, Aigner L. Neuroplasticity, limbic neuroblastosis and neuro-regenerative disorders. Neural Regen Res [serial online] 2018 [cited 2018 Oct 16];13:1322-6. Available from: http://www.nrronline.org/text.asp?2018/13/8/1322/235214




  Introduction Top


Neuroplasticity has expediently been intended to the innate adaptability of the brain to restructure its biological resonance towards the personal experience, environmental stimuli and disease throughout life (Cramer et al., 2011; Fuchs and Flügge, 2014). The structural and functional alterations of the brain can proceed via cellular events, biochemical pathways, synaptic remodeling and behavioural aspects in order to maintain the cerebral homeostasis and to facilitate neurological rehabilitation (Cramer et al., 2011). The regulation of neuroplasticity has been linked to variable factors like nutrition, education, physical activity, enriched environment, sensory inputs, emotion, and fecundity. In contrast, abnormal lifestyle, genetic variants, ageing, infirmity or injury appear to exacerbate neuroplasticity leading to movement symptoms, behavioural disorders and dementia (Mufson et al., 2015). Historically, William James (1842–1910) introduced the term neuroplasticity as a key biological module of psychological process (Berlucchi and Buchtel, 2009). Eugenio Tanzi (1856–1934) proposed that the neurobiology of learning might be constituted at potential vicinity between nerve endings in the brain (Peccarisi et al., 1994). Ernesto Lugaro (1870–1940) identified an intermediary type of neuron (Lugaro Cells) and emphasized that a bidirectional communication between nerve cells might be liable for the neuroplasticity of the brain (Berlucchi and Buchtel, 2009). Otto Dieters' (1834–1863) illustration of the axon, dendrites, and non-neuronal cells went largely unnoticed until Max Schultze (1825–1874) reasserted it (Deiters and Guillery, 2013; Voogd, 2016). Ramón y Cajal (1852–1934) ardently consolidated the neuron doctrine and insisted that the mature brain is an organ of obstinacy (Stahnisch and Nitsch, 2002). His ideology of neuroplasticity remains uncertain, though he noticed that learning could change microcircuits of the adult brain (Stahnisch and Nitsch, 2002). Richard Semon (1859–1918) proposed a term engram to a possible psychological interface between an intrinsic process and external stimuli, accountable for the neurobiochemical basis of learning (Poo et al., 2016). Karl Lashley (1890–1958) extrapolated the engram that neural substratum of learning might be collectively dynamic and distributed throughout cortices of the brain (Bruce, 2001). While Jerzy Konorski (1903–1973) recognized that the pre-existing circuits could reversibly be swapped between neurons upon sensory inputs (Zieliński, 2006), Charles Sherrington (1857–1952) developed the concept of synapse formation for the integrative action of the neurons during muscle contraction and reflex (Molnár and Brown, 2010). Donald Hebb's (1904–1985) postulate of cell assemblies through synaptic remodeling termed synaptic plasticity laid a sturdy foundation for the neurobiology of learning and memory (Brown and Milner, 2003; Josselyn et al., 2017). Henry Dale (1875–1968) and Otto Loewi (1873–1961) have identified that synaptic transmission at nerve terminals act via potential chemical messengers known as neurotransmitters (Tansey, 2006; McCoy and Tan, 2014). Theodor Bethe (1872–1954) and Paul Bach-y-Rita (1934–2006) supported the idea that neuroplasticity can be exchanged between different regions of the normal brain thereby the functional loss of a brain area can be indemnified by a physiologically intact region (Bach-y-Rita, 2001, 2003; Stahnisch, 2016). During 1980s, Eric Kandel provided the experimental proof for a reciprocal relation between the biochemical alteration, neuronal gene expression and synaptic plasticity along learning and behavioural outcome (Kandel, 1981; Kandel and Schwartz, 1982; Siegelbaum et al., 1982). While the adult brain had earlier been considered a stagnant organ, neuroplasticity had majorly been focused on the changes that occur at the synaptic connections. Indeed, there had generally been a great scientific challenge in understanding the structural and functional changes of the brain as it required a dynamic cellular process in response to the learning process and environmental stimuli (Ming and Song, 2011). However, there has been a gradual paradigm shift in the understanding of neuroplasticity due to a widespread recognition and validation of the generation of new neurons from neural stem cells in the adult brain. Moreover, the acceptance of the functional role of new neurons in the adult brain has revolutionized the concept of neuroplasticity and neurobiology of behaviour, learning and memory functions.


  The Neuroplasticity Role of Adult Neurogenesis Top


In 1960s, Joseph Altman (1925–2016) and Gopal Das (1933–1991) provided an initial evidence for the mitotic activity of neural precursors in the adult brain thereby scintillated a possibility for the generation of new neurons in adulthood (Altman and Das, 1965). It took several years to accept this notion, while the neuropoiesis in the mature brain, namely adult neurogenesis, has long been challenged, validated, attributed to cognitive functions and neural regeneration. Adult neurogenesis originates in the hippocampus and SVZ through the generation of neuroblasts or immature neurons (neuroblastosis) from neural stem cells (NSCs) in the brain [Figure 1] (Ming and Song, 2011; Couillard-Despres et al., 2005). Besides, the occurrence of adult neurogenesis has also been recognized in the cortex, amygdala, hypothalamus, and striatum that are known to functionally be associated with the limbic system and basal ganglia of the brain (Gould et al., 1999; Jhaveri et al., 2018; Paul et al., 2017; Kohl et al., 2010; Ernst et al., 2014; Kandasamy et al., 2015; Kandasamy and Aigner, 2018). Several lines of evidence support that adult neurogenesis can compromise key features of neuroplasticity hence 1) it appears to be regulated by various intrinsic factors and extrinsic stimuli (Kempermann et al., 1997; Ming and Song, 2011), 2) it provides cellular foundation for the pattern separation, social adaptation, regulation of mood, desire, olfaction, learning and memory (Zhao et al., 2008; Gonçalves et al., 2016) and 3) it denotes the regenerative potential of the brain against late-onset brain disorders (Kandasamy and Aigner, 2018). However, the molecular and cellular process associated with adult neurogenesis has not been completely understood. While the knowledge on regulation of adult neurogenesis at the level of NSCs maintenance and proliferation has been significantly improved (Kandasamy et al., 2010), underlying regulatory mechanisms of the generation, maintenance and fate of neuroblasts and their functional significance in the adult brain remains to be fully established.
Figure 1: Schematic representation of stem cells, progenitors, neuronal and glia population of the hippocampus including microglia.
The overall figure indicates neural stem cell (NSC) derived neurogenesis and gliogenesis through neuronal progenitor cell (NPS) in hippocampal stem cell niche of the adult brain. The bidirectional arrow indicates the self-renewal of NSC and Unicode arrows point out the differentiation of NPC. In the gliogenic program, astroglial precursor cell (APC) give rise to astrocytes and oligodendroglial precursor cell (OPC) give rise to oligodendrocyte respectively. The rectangle represents three different types of neuroblasts namely, housekeeping neuroblast, immunogenic (or intermediary) neuroblast and neurogenic neuroblast. The background represents the granule cells of the dentate gyrus of the hippocampus.


Click here to view



  Functional Significance and Types of Neuroblasts in the Adult Brain Top


The role of the hippocampus has been implemented to cognitive functions whereas irreversible failure in hippocampal neurogenesis has been attributed to dementia (Hollands et al., 2016). Of the abundant number of neural precursor cells produced in the adult brain, a very low number of new neurons are likely to be integrated into the hippocampus (Spalding et al., 2013). Why does the adult brain need to support the generation of the surplus amount of neuroblasts in the neurogenic niches? There has been an enormous amount of evidence suggesting that 1) neuroblasts are heterogeneous in nature with multipotential capacity (Moody, 1998; Walker et al., 2007), 2) neuroblasts have a robust migratory potential (Khlghatyan and Saghatelyan, 2012; Kaneko et al., 2017), 3) neuroblasts appear to be modulated by sensorimotor inputs (van Praag et al., 1999; Kandasamy and Aigner, 2018), 4) neuroblasts represent limbic-motor interface (Kandasamy and Aigner, 2018), 5) neuroblasts can generate action potential (Shuang Liu et al., 2009; Spampanato et al., 2012), 6) neuroblasts can provide neurotrophic support (Platel et al., 2008) and 7) neuroblasts acquire immunological signatures upon brain diseases and injury (Unger et al., 2018). Taken together cellular events of neuroblasts appears to be a multifaceted process to harmonize and contributes to diverse functions of the brain. Moreover, neuroblasts may provide an ideal model to generate, integrate, store, mobilize and carry forward the substratum of the brain resulting from various inputs including learning.

It can be speculated that neuroblasts might be comprised of isogenic cell populations in the adult brain. Thus, three different major classes of neuroblasts can be proposed namely, a) housekeeping neuroblasts, b) neurogenic neuroblasts and c) intermediary or immunogenic neuroblasts [Figure 1]. Hypothetically, these distinct isogenic neuroblasts may represent different forms of neuroplasticity and respond differentially to different learning paradigms, sensorimotor inputs, pathogenesis, and treatment (Kandasamy and Aigner, 2018). Since running wheel exercise has been known to induce mitogenesis of neuronal precursors (van Praag et al., 1999), survival of new neurons in the hippocampus appears to be supported by the enriched environment in quadruped animals (Kempermann et al., 1997). Physical exercise-mediated sensorimotor input may specifically act on the housekeeping neuroblasts to discharge neurotrophic factors leading to the integration of neurogenic neuroblasts with electrophysiological properties. Likewise, the enriched environment based socio-psychological wellness may exert a different mode of a molecular signature for neuronal survival in which changes in neurotransmitter levels may facilitate the integration of neurogenic neuroblasts in the hippocampus. However, prolonged and redundant sensorimotor inputs resulting from learning or exercise may predispose the housekeeping or intermediary neuroblasts to apoptotic cell death in order to assist the turnover of the neuroblast population. This could partly explain the previous observation of Nora Arbours' group indicating the specific elimination of early phase neuroblasts in the hippocampus during water maze based spatial learning in rodents (Döbrössy et al., 2003). This could also partly address the interpretation of Pasko Rakic that the adult brain may eliminate new neurons to prevent abnormal neural circuitry (Rakic, 2002) while it may not be excluded that integration of neurogenic neuroblasts may represent the synaptic replacement upon neuronal loss.


  Role of Neuroblasts in the Cognitive Function of Non-rodent Mammals Top


Notably, the turnover of hippocampal neurogenesis appears to be very marginal in Chiroptera (bats) (Amrein et al., 2007) and cetaceans (dolphin and whale) (Patzke et al., 2015). These animals are highly sensitive to seasonal variation, habitat disturbance, and predators. Therefore, they are likely to undergo a high-level chronic stress. The reproductive physiology and circadian rhythm are completely different in Chiroptera and cetaceans compared to other animals. While these creatures exploit ultrasonic echolocation for navigation, it may demand high-level energy expenditure and abnormal sensorimotor inputs (Moss and Surlykke, 2010; Martens et al., 2015). While sheep brain has been shown to sustain the neuroblasts without terminal neuronal differentiation (Piumatti et al., 2018), recent reports suggest that non-newly generated neuroblasts may represent the neuroplasticity of the brain in mammals (Palazzo et al., 2018; Snyder, 2018). Though the brains of cetacean have been characterized by less turnover of neurogenesis, they have been found to have high cognitive ability and social behaviour (Marino et al., 2007). While dolphin-assisted ultrasound therapy has been known to yield positive effect on cognitive function in human (Fiksdal et al., 2012), transcranial focused ultrasound appears to promote cognitive function in human (Legon et al., 2014). Considering the aforementioned facts, it can be presumed that ultrasound-mediated cognitive improvement may be facilitated through neuroblasts of the adult brain. Thus neuroblasts in the adult brain might play a major role in learning and memory process. However, future studies directed towards understanding the effects of ultrasound on the regulation of adult neurogenesis and investigation of the role of neuroblasts in cognitive functions may provide valid clues to improve neuroregenerative plasticity for the betterment of ageing human society.


  Reactive Neuroblastosis in Diseased Brains Top


Hippocampal neurogenesis appears highly vulnerable to ageing, chronic stress, drug abuse and disease, especially in human. The current understanding of the regulation of adult neurogenesis indicates neotrophy (a rapid non-malignant cell division subjected to apoptosis) of neuroblasts, recognized as reactive neuroblastosis, in response to early pathogenesis of a diverse range of neurological disorders (Kandasamy and Aigner, 2018). Among them, stroke, epilepsy, Huntington's disease, Alzheimer's disease, Parkinson's disease, Amyotrophic Lateral Sclerosis, brain injuries and affective disorders collectively share reactive neuroblastosis as a potential hallmark at the early phase of the disease (Kandasamy et al., 2010, 2015; Kandasamy and Aigner, 2018). The observed reactive neuroblastosis parallel to aberrant neuroimmune response has been proposed to result in mitotic inactivation of NSCs, thereby predisposing the adult brain to abate neurogenic process leading to dementia in the late phase of diseases (Kandasamy et al., 2010, 2015; Kandasamy and Aigner, 2018). In 1998, Fred Gage's group provided evidence for ongoing hippocampal neurogenesis in the adult human brain (Eriksson et al., 1998). Though a recent report from Alvarez-Buylla team found no hint for absolute neurogenesis in hippocampus of ageing human brain (Sorrells et al., 2018), a subsequent report by Boldrini M et al., provided again a conclusive evidence of neurogenesis in the adult human brain (Boldrini et al., 2018). The controversial observation from Alvarez-Buylla group has been highly debated as the negative data on neurogenesis which assumed to be originating from a methodological, technical point or result of a disease and treatment affecting the analyzed adult human brains (Snyder, 2018; Kempermann et al., 2018). The existing knowledge on adult neurogenesis in humans has largely been derived from post-mortem studies that may not represent the actual status of the brain, for example, due to a long post-mortem delay until the brain gets fixed. Besides, the expression of glial cell markers in immunogenic neuroblasts and their dispersal in the brain might represent an indication for a neuropathology. The doublecortin (DCX) positive neuroblasts have been shown to express ionized calcium-binding adapter molecule 1 (IBA1) and oligodendrocyte transcription factor 2 (OLIG2) in 13-year-old human brain (Sorrells et al., 2018). Surprisingly, the OLIG2 and IBA1 are known to be markers for entirely different glial cell lineages. While the expression of OLIG2 has been proposed as a negative modulator of neurogenesis, it represents a potential marker of brain tumours. Microglia has been shown to express IBA1 thus the observed DCX/IBA1 double positive neuroblasts indicates a clear sign of immunological response against a neuropathology (Unger et al., 2018). Considering the unpredictable nature of mental status, comorbidity and limitations of the brain imaging tools, it will be difficult to monitor and demonstrate the complete scenario of neurogenesis in the adult human brain. Thus, the mechanism underlying the regulation and terminal fate of adult neurogenesis acting via neuroblastosis remains indefinable. However, depending upon the situation, the neuroblastosis event might signify the differential role of adult neurogenesis in the brain (Kandasamy and Aigner, 2018).


  Conclusion Top


Functional regeneration is one of the prerequisites for the homeostasis of organisms accountable for the normal lifespan and species conservation. Although regeneration has been implemented to the functional recovery against pathogenesis and injury, ageing poses a fundamental challenge to the regenerative competence of organism. However, the degree of regeneration may differ to a great extent among different biological systems along the lifestyle and environmental factors. In general, ageing has been a primary risk factor for many metabolic, vascular, malignant and neurocognitive disorders in humans. Among them, the prevalence of dementia is expected to increase many fold in elderly population due to increase in life expectancy worldwide. In general, neurodegeneration is often considered the most common biological cause of dementia. However, we would like to put forward that neuroregenerative failure might be more critical for dementia regardless of neurodegeneration. Further, we would like to introduce a term “neuroregenerative disorder” as an additional variable for dementia-related syndromes that may potentially antagonize the manoeuvre of neuroplasticity. Eventually, abnormal ageing, neurodevelopmental, movement, neuropsychiatric, neuroimmune disorders, stroke, seizure, infectious neurological symptoms, chronic stress, depression, obesity, diabetes and hormonal imbalances that show abnormal neurogenesis can be categorized under neuroregenerative disorders. Directive of any therapeutic strategies towards symptomatic management for these brain diseases without considering the neuroregeneration would be an incomplete attempt to restore the neuroplasticity. Thus, elucidating the neurobiological basis for neuroregenerative failure using advance non-invasive scientific tools may provide insight into the functional recovery of the human brain. However, the existence of unanimous putative markers and alternate forms of adult neurogenesis underlying the neuroplasticity cannot be completely excluded. Besides, mammals including cetaceans tend to exhibit a high degree of cognitive function and social behaviour. Recently, neuroblasts have been suggested to compensate the immunogenicity and neuroplasticity of the adult brain thus the ultrasound-mediated precognitive effect may be mediating via circulation of neuroblasts in the mammalian brains. While identification of a non-invasive strategy to boost cognitive function has been a great scientific thrust, understanding the biological effect of ultrasound on the regulation of neuroblasts may signify a potential treatment for dementia.[63]

Acknowledgments: MK acknowledges UGC-SAP and DST-FIST for the infrastructure of the Department of Animal Science, Bharathidasan University.

Author contributions: Conceptual writing and illustration: MK; commenting and writing: LA.

Financial support: This work was supported by the FWF Special Research Program (SFB) F44 (F4413-B23) “Cell Signaling in Chronic CNS Disorders”, and through funding from the European Union's Seventh Framework Program (FP7/2007-2013) under grant agreements n° HEALTH-F2-2011-278850 (INMiND), n° HEALTH-F2-2011-279288 (IDEA), n° FP7-REGPOT-316120 (GlowBrain); a startup grant from the Faculty Recharge Programme, University Grants Commission (UGC-FRP), New Delhi, India (to MK); a research grant from DST-SERB, New Delhi, India (EEQ/2016/000639) (to MK); an Early Career Research Award (ECR/2016/000741) (to MK).

Copyright license agreement: The Copyright License Agreement has been signed by all authors before publication.

Conflicts of interest: None declared.

Plagiarism check: Checked twice by iThenticate.

Peer review: Externally peer reviewed.

Open access statement: This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

Open peer reviewers: Leonardo Guzman, Universidad de Concepcion, Chile; Hernández-Echeagaray Elizabeth, Universidad Nacional Autonoma de Mexico, Mexico.

Additional file: Open peer review reports 1, 2[Additional file 1] [Additional file 2].

Funding: This work was supported by the FWF Special Research Program (SFB) F44 (F4413-B23) “Cell Signaling in Chronic CNS Disorders”, and through funding from the European Union's Seventh Framework Program (FP7/2007-2013) under grant agreements n° HEALTH-F2-2011-278850 (INMiND), n° HEALTH-F2-2011-279288 (IDEA), n° FP7-REGPOT-316120 (GlowBrain); a startup grant from the Faculty Recharge Programme, University Grants Commission (UGC-FRP), New Delhi, India (to MK); a research grant from DST-SERB, New Delhi, India (EEQ/2016/000639) (to MK); an Early Career Research Award (ECR/2016/000741) (to MK).



 
  References Top

1.
Altman J, Das GD (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124:319-335.  Back to cited text no. 1
    
2.
Amrein I, Dechmann DKN, Winter Y, Lipp HP (2007) Absent or low rate of adult neurogenesis in the hippocampus of bats (Chiroptera). PLoS One 2:e455.  Back to cited text no. 2
    
3.
Bach-y-Rita P (2001) Theoretical and practical considerations in the restoration of function after stroke. Top Stroke Rehabil 8:1-15.  Back to cited text no. 3
    
4.
Bach-y-Rita P (2003) Theoretical basis for brain plasticity after a TBI. Brain Inj 17:643-651.  Back to cited text no. 4
    
5.
Berlucchi G, Buchtel HA (2009) Neuronal plasticity: historical roots and evolution of meaning. Exp Brain Res 192:307-319.  Back to cited text no. 5
    
6.
Boldrini M, Fulmore CA, Tartt AN, Simeon LR, Pavlova I, Poposka V, Rosoklija GB, Stankov A, Arango V, Dwork AJ, Hen R, Mann JJ (2018) Human Hippocampal Neurogenesis Persists throughout Aging. Cell Stem Cell 22:589-599.e5.  Back to cited text no. 6
    
7.
Brown RE, Milner PM (2003) The legacy of Donald O. Hebb: more than the Hebb synapse. Nat Rev Neurosci 4:1013-1019.  Back to cited text no. 7
    
8.
Bruce D (2001) Fifty years since Lashley's In search of the Engram: refutations and conjectures. J Hist Neurosci 10:308-318.  Back to cited text no. 8
    
9.
Couillard-Despres S, Winner B, Schaubeck S, Aigner R, Vroemen M, Weidner N, Bogdahn U, Winkler J, Kuhn H-G, Aigner L (2005) Doublecortin expression levels in adult brain reflect neurogenesis. Eur J Neurosci 21:1-14.  Back to cited text no. 9
    
10.
Cramer SC, Sur M, Dobkin BH, O’Brien C, Sanger TD, Trojanowski JQ, Rumsey JM, Hicks R, Cameron J, Chen D, Chen WG, Cohen LG, deCharms C, Duffy CJ, Eden GF, Fetz EE, Filart R, Freund M, Grant SJ, Haber S, et al. (2011) Harnessing neuroplasticity for clinical applications. Brain 134:1591-1609.   Back to cited text no. 10
    
11.
Deiters VS, Guillery RW (2013) Otto Friedrich Karl Deiters (1834-1863). J Comp Neurol 521:1929-1953.  Back to cited text no. 11
    
12.
Döbrössy MD, Drapeau E, Aurousseau C, Le Moal M, Piazza PV, Abrous DN (2003) Differential effects of learning on neurogenesis: learning increases or decreases the number of newly born cells depending on their birth date. Mol Psychiatry 8:974-982.  Back to cited text no. 12
    
13.
Eriksson PS, Perfilieva E, Björk-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313-1317.  Back to cited text no. 13
    
14.
Ernst A, Alkass K, Bernard S, Salehpour M, Perl S, Tisdale J, Possnert G, Druid H, Frisén J (2014) Neurogenesis in the striatum of the adult human brain. Cell 156:1072-1083.  Back to cited text no. 14
    
15.
Fiksdal BL, Houlihan D, Barnes AC (2012) Dolphin-assisted therapy: claims versus evidence. Autism Res Treat 2012:839792.  Back to cited text no. 15
    
16.
Fuchs E, Flügge G (2014) Adult neuroplasticity: more than 40 years of research. Neural Plast 2014:541870.   Back to cited text no. 16
    
17.
Gonçalves JT, Schafer ST, Gage FH (2016) Adult Neurogenesis in the Hippocampus: From Stem Cells to Behavior. Cell 167:897-914.  Back to cited text no. 17
    
18.
Gould E, Reeves AJ, Graziano MS, Gross CG (1999) Neurogenesis in the neocortex of adult primates. Science 286:548-552.  Back to cited text no. 18
    
19.
Hollands C, Bartolotti N, Lazarov O (2016) Alzheimer's disease and hippocampal adult neurogenesis; exploring shared mechanisms. Front Neurosci 10:178.  Back to cited text no. 19
    
20.
Jhaveri DJ, Tedoldi A, Hunt S, Sullivan R, Watts NR, Power JM, Bartlett PF, Sah P (2018) Evidence for newly generated interneurons in the basolateral amygdala of adult mice. Mol Psychiatry 23:521-532.  Back to cited text no. 20
    
21.
Josselyn SA, Köhler S, Frankland PW (2017) Heroes of the Engram. J Neurosci 37:4647-4657.  Back to cited text no. 21
    
22.
Kandasamy M, Aigner L (2018) Reactive neuroblastosis in Huntington's disease: a putative therapeutic target for striatal regeneration in the adult brain. Front Cell Neurosci 12:37.  Back to cited text no. 22
    
23.
Kandasamy M, Couillard-Despres S, Raber KA, Stephan M, Lehner B, Winner B, Kohl Z, Rivera FJ, Nguyen HP, Riess O, Bogdahn U, Winkler J, von Hörsten S, Aigner L (2010) Stem cell quiescence in the hippocampal neurogenic niche is associated with elevated transforming growth factor-beta signaling in an animal model of Huntington disease. J Neuropathol Exp Neurol 69:717-728.  Back to cited text no. 23
    
24.
Kandasamy M, Rosskopf M, Wagner K, Klein B, Couillard-Despres S, Reitsamer HA, Stephan M, Nguyen HP, Riess O, Bogdahn U, Winkler J, von Hörsten S, Aigner L (2015) Reduction in subventricular zone-derived olfactory bulb neurogenesis in a rat model of Huntington's disease is accompanied by striatal invasion of neuroblasts. PLoS One 10:e0116069.  Back to cited text no. 24
    
25.
Kandel ER (1981) Calcium and the control of synaptic strength by learning. Nature 293:697-700.  Back to cited text no. 25
    
26.
Kandel ER, Schwartz JH (1982) Molecular biology of learning: modulation of transmitter release. Science 218:433-443.  Back to cited text no. 26
    
27.
Kaneko N, Sawada M, Sawamoto K (2017) Mechanisms of neuronal migration in the adult brain. J Neurochem 141:835-847.  Back to cited text no. 27
    
28.
Kempermann G, Gage FH, Aigner L, Song H, Curtis MA, Thuret S, Kuhn HG, Jessberger S, Frankland PW, Cameron HA, Gould E, Hen R, Abrous DN, Toni N, Schinder AF, Zhao X, Lucassen PJ, Frisén J (2018) Human adult neurogenesis: evidence and remaining questions. Cell Stem Cell doi:10.1016/j.stem.2018.04.004.  Back to cited text no. 28
    
29.
Kempermann G, Kuhn HG, Gage FH (1997) More hippocampal neurons in adult mice living in an enriched environment. Nature 386:493-495.  Back to cited text no. 29
    
30.
Khlghatyan J, Saghatelyan A (2012) Time-lapse imaging of neuroblast migration in acute slices of the adult mouse forebrain. J Vis Exp:e406.  Back to cited text no. 30
    
31.
Kohl Z, Regensburger M, Aigner R, Kandasamy M, Winner B, Aigner L, Winkler J (2010) Impaired adult olfactory bulb neurogenesis in the R6/2 mouse model of Huntington's disease. BMC Neurosci 11:114.  Back to cited text no. 31
    
32.
Legon W, Sato TF, Opitz A, Mueller J, Barbour A, Williams A, Tyler WJ (2014) Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans. Nat Neurosci 17:322-329.  Back to cited text no. 32
    
33.
Marino L, Connor RC, Fordyce RE, Herman LM, Hof PR, Lefebvre L, Lusseau D, McCowan B, Nimchinsky EA, Pack AA, Rendell L, Reidenberg JS, Reiss D, Uhen MD, Gucht EV der, Whitehead H (2007) Cetaceans have complex brains for complex cognition. PLoS Biol 5:e139.  Back to cited text no. 33
    
34.
Martens EA, Wadhwa N, Jacobsen NS, Lindemann C, Andersen KH, Visser A (2015) Size structures sensory hierarchy in ocean life. Proc Biol Sci 282:20151346.  Back to cited text no. 34
    
35.
McCoy AN, Tan YS (2014) Otto Loewi (1873-1961): Dreamer and Nobel laureate. Singapore Med J 55:3-4.  Back to cited text no. 35
    
36.
Ming G, Song H (2011) Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70:687-702.  Back to cited text no. 36
    
37.
Molnár Z, Brown RE (2010) Insights into the life and work of Sir Charles Sherrington. Nat Rev Neurosci 11:429-436.  Back to cited text no. 37
    
38.
Moody SA (1998) Cell Lineage and Fate Determination. Elsevier.  Back to cited text no. 38
    
39.
Moss CF, Surlykke A (2010) Probing the natural scene by echolocation in bats. Front Behav Neurosci 4:33.  Back to cited text no. 39
    
40.
Mufson EJ, Mahady L, Waters D, Counts SE, Perez SE, DeKosky ST, Ginsberg SD, Ikonomovic MD, Scheff SW, Binder LI (2015) Hippocampal plasticity during the progression of Alzheimer's disease. Neuroscience 309:51-67.   Back to cited text no. 40
    
41.
Palazzo O, La Rosa C, Piumatti M, Bonfanti L (2018) Do large brains of long-living mammals prefer non-newly generated, immature neurons? Neural Regen Res 13:633-634.  Back to cited text no. 41
    
42.
Patzke N, Spocter MA, Karlsson KÆ, Bertelsen MF, Haagensen M, Chawana R, Streicher S, Kaswera C, Gilissen E, Alagaili AN, Mohammed OB, Reep RL, Bennett NC, Siegel JM, Ihunwo AO, Manger PR (2015) In contrast to many other mammals, cetaceans have relatively small hippocampi that appear to lack adult neurogenesis. Brain Struct Funct 220:361-383.  Back to cited text no. 42
    
43.
Paul A, Chaker Z, Doetsch F (2017) Hypothalamic regulation of regionally distinct adult neural stem cells and neurogenesis. Science 356:1383-1386.  Back to cited text no. 43
    
44.
Peccarisi C, Boeri R, Salmaggi A (1994) Eugenio Tanzi (1856-1934) and the beginnings of European neurology. J Hist Neurosci 3:177-185.  Back to cited text no. 44
    
45.
Piumatti M, Palazzo O, La Rosa C, Crociara P, Parolisi R, Luzzati F, Lévy F, Bonfanti L (2018) Non-newly generated, “immature” neurons in the sheep brain are not restricted to cerebral cortex. J Neurosci 38:826-842.  Back to cited text no. 45
    
46.
Platel JC, Dave KA, Bordey A (2008) Control of neuroblast production and migration by converging GABA and glutamate signals in the postnatal forebrain. J Physiol (Lond) 586:3739-3743.  Back to cited text no. 46
    
47.
Poo MM, Pignatelli M, Ryan TJ, Tonegawa S, Bonhoeffer T, Martin KC, Rudenko A, Tsai LH, Tsien RW, Fishell G, Mullins C, Gonçalves JT, Shtrahman M, Johnston ST, Gage FH, Dan Y, Long J, Buzsáki G, Stevens C (2016) What is memory? The present state of the engram. BMC Biol 14:40.  Back to cited text no. 47
    
48.
Rakic P (2002) Adult neurogenesis in mammals: an identity crisis. J Neurosci 22:614-618.  Back to cited text no. 48
    
49.
Shuang Liu X, Chopp M, Zhang XG, Zhang RL, Buller B, Hozeska-Solgot A, Gregg SR, Zhang ZG (2009) Gene profiles and electrophysiology of doublecortin-expressing cells in the subventricular zone after ischemic stroke. J Cereb Blood Flow Metab 29:297-307.  Back to cited text no. 49
    
50.
Siegelbaum SA, Camardo JS, Kandel ER (1982) Serotonin and cyclic AMP close single K+ channels in Aplysia sensory neurones. Nature 299:413-417.  Back to cited text no. 50
    
51.
Snyder JS (2018) Questioning human neurogenesis. Nature 555:315-316.  Back to cited text no. 51
    
52.
Sorrells SF, Paredes MF, Cebrian-Silla A, Sandoval K, Qi D, Kelley KW, James D, Mayer S, Chang J, Auguste KI, Chang EF, Gutierrez AJ, Kriegstein AR, Mathern GW, Oldham MC, Huang EJ, Garcia-Verdugo JM, Yang Z, Alvarez-Buylla A (2018) Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature 555:377-381.  Back to cited text no. 52
    
53.
Spalding KL, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner HB, Boström E, Westerlund I, Vial C, Buchholz BA, Possnert G, Mash DC, Druid H, Frisén J (2013) Dynamics of hippocampal neurogenesis in adult humans. Cell 153:1219-1227.  Back to cited text no. 53
    
54.
Spampanato J, Sullivan RK, Turpin FR, Bartlett PF, Sah P (2012) Properties of doublecortin expressing neurons in the adult mouse dentate gyrus. PLoS One 7:e41029.  Back to cited text no. 54
    
55.
Stahnisch FW (2016) From ‘nerve fiber regeneration’ to ‘functional changes’ in the human brain—on the paradigm-shifting work of the experimental physiologist Albrecht Bethe (1872–1954) in Frankfurt am Main. Front Syst Neurosci 10:6.  Back to cited text no. 55
    
56.
Stahnisch FW, Nitsch R (2002) Santiago Ramón y Cajal's concept of neuronal plasticity: the ambiguity lives on. Trends Neurosci 25:589-591.  Back to cited text no. 56
    
57.
Tansey EM (2006) Henry Dale and the discovery of acetylcholine. C R Biol 329:419-425.  Back to cited text no. 57
    
58.
Unger MS, Marschallinger J, Kaindl J, Klein B, Johnson M, Khundakar AA, Roßner S, Heneka MT, Couillard-Despres S, Rockenstein E, Masliah E, Attems J, Aigner L (2018) Doublecortin expression in CD8+ T-cells and microglia at sites of amyloid-β plaques: A potential role in shaping plaque pathology? Alzheimers Dement doi: 10.1016/j.jalz.2018.02.017.  Back to cited text no. 58
    
59.
van Praag H, Kempermann G, Gage FH (1999) Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 2:266-270.  Back to cited text no. 59
    
60.
Voogd J (2016) Deiters' nucleus. Its role in cerebellar ideogenesis: the ferdinando rossi memorial lecture. Cerebellum 15:54-66.  Back to cited text no. 60
    
61.
Walker TL, Yasuda T, Adams DJ, Bartlett PF (2007) The doublecortin-expressing population in the developing and adult brain contains multipotential precursors in addition to neuronal-lineage cells. J Neurosci 27:3734-3742.  Back to cited text no. 61
    
62.
Zhao C, Deng W, Gage FH (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132:645-660.  Back to cited text no. 62
    
63.
Zieliński K (2006) Jerzy Konorski on brain associations. Acta Neurobiol Exp (Wars) 66:75-84.  Back to cited text no. 63
    


    Figures

  [Figure 1]



 

Top
 
 
  Search
 
Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Access Statistics
Email Alert *
Add to My List *
* Registration required (free)

  The Neuroplastic...Functional Signi...Role of Neurobla...Reactive Neurobl...
  In this article
Abstract
Introduction
Conclusion
References
Article Figures

 Article Access Statistics
    Viewed576    
    Printed2    
    Emailed0    
    PDF Downloaded84    
    Comments [Add]    

Recommend this journal


[TAG2]
[TAG3]
[TAG4]