• Users Online: 450
  • Home
  • Print this page
  • Email this page


 
 Table of Contents  
RESEARCH ARTICLE
Year : 2019  |  Volume : 14  |  Issue : 12  |  Page : 2156-2163

Relationship between high dietary fat intake and Parkinson’s disease risk: a meta-analysis


1 Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
2 Intensive Care Unit, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China

Date of Submission16-Nov-2018
Date of Acceptance09-May-2019
Date of Web Publication7-Aug-2019

Correspondence Address:
Qiang Sun
Intensive Care Unit, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province
China
Login to access the Email id

Source of Support: This study was supported by the National Natural Science Foundation of China, No. 31200868 (to XC), Conflict of Interest: None


DOI: 10.4103/1673-5374.262599

Rights and Permissions
  Abstract 

Objective: To assess whether dietary fat intake influences Parkinson’s disease risk.
Data Sources: We systematically surveyed the Embase and PubMed databases, reviewing manuscripts published prior to October 2018. The following terms were used: (“Paralysis agitans” OR “Parkinson disease” OR “Parkinson” OR “Parkinson’s” OR “Parkinson’s disease”) AND (“fat” OR “dietary fat” OR “dietary fat intake”).
Data Selection: Included studies were those with both dietary fat intake and Parkinson’s disease risk as exposure factors. The Newcastle-Ottawa Scale was adapted to investigate the quality of included studies. Stata V12.0 software was used for statistical analysis.
Outcome Measures: The primary outcomes included the relationship between high total energy intake, high total fat intake, and Parkinson’s disease risk. The secondary outcomes included the relationship between different kinds of fatty acids and Parkinson’s disease risk.
Results: Nine articles met the inclusion criteria and were incorporated into this meta-analysis. Four studies scored 7 and the other five studies scored 9 on the Newcastle-Ottawa Scale, meaning that all studies were of high quality. Meta-analysis results showed that high total energy intake was associated with an increased risk of Parkinson’s disease (P = 0.000, odds ratio (OR) = 1.49, 95% confidence interval (CI): 1.26–1.75); in contrast, high total fat intake was not associated with Parkinson’s disease risk (P = 0.123, OR = 1.07, 95% CI: 0.91–1.25). Subgroup analysis revealed that polyunsaturated fatty acid intake (P = 0.010, OR = 1.03, 95% CI: 0.88–1.20) reduced the risk of Parkinson’s disease, while arachidonic acid (P = 0.026, OR = 1.15, 95% CI: 0.97–1.37) and cholesterol (P = 0.002, OR = 1.09, 95% CI: 0.92–1.29) both increased the risk of Parkinson’s disease. Subgroup analysis also demonstrated that, although the results were not significant, consumption of n-3 polyunsaturated fatty acids (P = 0.071, OR = 0.88, 95% CI: 0.73–1.05), α-linolenic acid (P = 0.06, OR = 0.86, 95% CI: 0.72–1.02), and the n-3 to n-6 ratio (P = 0.458, OR = 0.89, 95% CI: 0.75–1.06) were all linked with a trend toward reduced Parkinson’s disease risk. Monounsaturated fatty acid (P = 0.450, OR = 1.06, 95% CI: 0.91–1.23), n-6 polyunsaturated fatty acids (P = 0.100, OR = 1.15, 95% CI: 0.96–1.36) and linoleic acid (P = 0.053, OR = 1.11, 95% CI: 0.94–1.32) intakes were associated with a non-significant trend toward higher PD risk. Saturated fatty acid (P = 0.619, OR = 1.01, 95% CI: 0.87–1.18) intake was not associated with Parkinson’s disease.
Conclusion: Dietary fat intake affects Parkinson’s disease risk, although this depends on the fatty acid subtype. Higher intake of polyunsaturated fatty acids may reduce the risk of Parkinson’s disease, while higher cholesterol and arachidonic acid intakes may elevate Parkinson’s disease risk. However, further studies and evidence are needed to validate any link between dietary fat intake and Parkinson’s disease.

Keywords: nerve regeneration; dietary fat; Parkinson′s disease risk; meta-analysis; total energy intake; polyunsaturated fatty acids; arachidonic acid; cholesterol; α-linolenic acid; linoleic acid; n-3/n-6 polyunsaturated fatty acid intake ratio; monounsaturated fatty acids; neural regeneration


How to cite this article:
Qu Y, Chen X, Xu MM, Sun Q. Relationship between high dietary fat intake and Parkinson’s disease risk: a meta-analysis. Neural Regen Res 2019;14:2156-63

How to cite this URL:
Qu Y, Chen X, Xu MM, Sun Q. Relationship between high dietary fat intake and Parkinson’s disease risk: a meta-analysis. Neural Regen Res [serial online] 2019 [cited 2019 Sep 20];14:2156-63. Available from: http://www.nrronline.org/text.asp?2019/14/12/2156/262599

Chinese Library Classification No. R459.3; R741





  Introduction Top


Parkinson’s disease (PD) is a neurodegenerative disease that is progressive and has a high incidence rate, with characteristic substantia nigra dopaminergic neuron depletion that gives rise to striatal dopamine depletion (Zecca et al., 2004; Sampaio et al., 2017; Martinez et al., 2018; Qu et al., 2019). PD development is influenced by both environmental and genetic mechanisms (Di Monte et al., 2002; Ma et al., 2015a, b, c; Liu et al., 2018), and it is a multi-factorial disease that arises from a combination of family history, age, ethnicity, occupation, and diet (Chaturvedi et al., 1995; Logroscino et al., 1998; Taylor et al., 1999; Kirkey et al., 2001; Priyadarshi et al., 2001; Zorzon et al., 2002; Li et al., 2005). There is evidence that, rather than a single disease, PD is actually a set of individual illnesses with a similar presentation (Dick et al., 2007). Although the mechanisms of PD development and progression are incompletely understood, inflammation, oxidative stress, and impaired mitochondrial function are all known to contribute to this disease (Jenner, 2003; Wullner and Klockgether, 2003; Schapira, 2007; Wang et al., 2017). Oxidative damage readily impacts the brain, because it requires substantial oxygen and iron availability (Noseworthy and Bray, 1998).

Dietary fat intake refers to the sum of fats from the various foods we eat every day, including simple lipids, complex lipids, terpenoids and steroids and their derivatives, derived lipids, and binding lipids. As well as providing energy to organisms, different fats have specific functions. Fatty acids are essential for brain function, and studies in rats have demonstrated that brains are dependent on dietary fatty acid intake (Ikemoto et al., 2001; Bowen and Clandinin, 2002; Hashimoto et al., 2002; Levant et al., 2007). Epidemiological evidence also suggests that dietary fat consumption may be linked with PD risk, but research results have to date been inconsistent (Hellenbrand et al., 1996; Noseworthy and Bray, 1998; Schatzkin et al., 2001; Chen et al., 2003; de Lau et al., 2005; Gao et al., 2007; Powers et al., 2009; Miyake et al., 2010; Kyrozis et al., 2013; Kamel et al., 2014). In recent years, increasing numbers of PD animal models and epidemiological investigations have shown that polyunsaturated fatty acids (PUFAs) play an important role in cell membrane sequencing, gene transcription, cell signal transduction, and protease activation of glial and neuronal cells, thereby influencing PD progress (Logroscino et al., 1996; Akbar and Kim, 2002; Akbar et al., 2005; Calon et al., 2005). Furthermore, in a PD autopsy report, docosahexaenoic acid levels were markedly decreased in the substantia nigra pars compacta and frontal cortex lipid raft (Dalfo et al., 2005; Fabelo et al., 2011).

Daily dietary fat intake may influence PD development, but further exploration of this association is needed. In the present meta-analysis, we conducted a systematic review with the aim of summarizing the available evidence regarding links between fat consumption and PD risk.

A systematic review was performed using the Embase and PubMed database, and relevant observational studies assessing the link between lipid or dietary fat content and PD risk were identified. Reference review of identified papers was also used to identify additional relevant publications. Only human studies were considered, and all studies were published in English.

The Meta-Analysis of Observational Studies in Epidemiology (MOOSE) guidelines were followed to design, implement, analyze, and report the results of this meta-analysis. The MOOSE guidelines were described in JAMA (Stroup et al., 2000) and propose a common methodology for meta-analyses.


  Data and Methods Top


Search strategy

Embase and PubMed were searched for the following terms: (“Paralysis agitans” OR “Parkinson disease” OR “Parkinson” OR “Parkinson’s” OR “Parkinson’s disease”) AND (“fat” OR “dietary fat” OR “dietary fat intake”). Manuscripts published prior to October 2018 were reviewed. Two authors (YQ and XC) independently conducted the literature search.

Selection criteria

A total of 343 references were screened, using the following inclusion criteria: (1) the study could be defined as epidemiological, including case-control, nested case-control, cohort, and prospective studies; (2) dietary fat intake was the exposure of interest; (3) PD risk was the outcome of interest; (4) the study reported the odds ratio (OR) or relative risk (RR) and 95% confidence interval (CI), or the reported data were sufficient to be able to calculate these.

Articles that did not involve humans or that were not original, such as reviews, editorials, meta-analyses, or commentaries, were excluded. We also excluded studies of other exposures or endpoints.

Data extraction

Two authors (YQ and XC) independently collected detailed information from each identified article, with any discrepancies being resolved via discussion with the third author (MMX). The following data were extracted: (1) basic information: authors, year of publication, study population, age, sex, sample size, diagnoses, and case number; (2) study characteristics: study name and design, study location, follow-up duration; (3) variables adjusted during analysis; (4) outcome assessment method; (5) risk estimates and corresponding 95% CI s. If multiple multivariate-adjusted models were used for risk extraction, we extracted the confound-adjusted OR estimate.

Data regarding dietary intake in non-overlapping individuals were derived from questionnaires, which had high heterogeneity (I2 = 75.9%).

Quality assessment

The Newcastle-Ottawa Scale (Cota et al., 2013) was adapted to investigate the quality of included studies. Case-control and cohort studies were investigated separately (Additional Tables 1 and 2). A total score of 0–3, 4–6, or 7–9 indicated a study of low, intermediate, or high quality, respectively.

Both authors (YQ and XC) independently used this scale to establish the quality of each study (Fang et al., 2015).

Outcome measures

The primary outcomes included high total energy intake, high total fat intake, and sex. The secondary outcomes included different kinds of fatty acids.

Statistical analysis

The OR and corresponding 95% CI were used as risk estimates for studies that satisfied the inclusion criteria. Dietary fat intake was determined based on Etminan’s classification, as follows: high fat intake was within the 4th quartile or 5th quintile, while moderate fat intake was within the 2nd, 3rd, or 4th quintile or the 2nd and 3rd quartile. A random-effects (Der Simonian and Laird) model was used to pool these OR s, with the model combining heterogeneity within and between studies. The RR values of the four cohort analyses were converted to the corresponding OR values (Zhang et al., 1998). The values used in statistical analyses were all OR values.

Subgroup analysis was carried out to investigate significant differences in OR s, and whether results were influenced by residual confounding factors adjusted for sex, geographical location, numbers of participants, follow-up duration, and study quality.

The I2 statistic was used as a measure of heterogeneity of the included studies, with I2 values of 25%, 50%, or 75% respectively indicating low, intermediate, or high heterogeneity.

Both a funnel plot and Egger’s test were used to assess the potential for publication bias. Studies that were identified as having a high risk of bias were subjected to both Egger’s and Begg’s tests. P < 0.05 was considered to indicate significant publication bias. Two-tailed statistical tests were performed using Stata 12.0 software (Stata Corporation, College Station, TX, USA), with P < 0.05 as the significance threshold.


  Results Top


Search results

We retrieved 259 PubMed articles and 173 Embase articles, all of which were published before October 2018 [Figure 1]. Nine articles (four cohort studies and five case–control studies) met the inclusion criteria and were incorporated into this meta-analysis.
Figure 1: Flow chart depicting the literature search and selection strategy.

Click here to view


Study characteristics

Basic parameters of the included studies are summarized in [Table 1] and [Table 2]. A total of 778,571 participants were included in the nine studies, including 5751 PD cases. There was a range of follow-up durations from 2–14 years. Four studies (Chen et al., 2003; Gao et al., 2007; Kyrozis et al., 2013; Dong et al., 2014) were cohort studies, while five studies (Hellenbrand et al., 1996; Logroscino et al., 1996; Powers et al., 2009; Miyake et al., 2010; Kamel et al., 2014) were case-control studies. Four studies scored 7 on the Newcastle-Ottawa Scale, and the other five studies scored 9, meaning that all studies were of high quality (Additional Tables 1 and 2).
Table 1: Characteristics of the included studies (n = 9) regarding the association between dietary fats intake and Parkinson’s disease

Click here to view
Table 2: Characteristics of included studies

Click here to view


Meta-analysis results

Primary outcomes

To assess the link between different factors of interest and the exposure assessments, we performed separate analyses. The pooled OR for PD in those with a high total energy intake was 1.49 (P = 0.000, OR = 1.49, 95% CI: 1.26–1.75), while it was 1.07 (P =0.123, OR = 1.07, 95% CI: 0.91–1.25) in those with high total fat intake, and 1.02 (P = 0.005, OR = 1.02, 95% CI: 0.79–1.30) in men. The overall pooled OR was 1.21 (P = 0.000, OR = 1.21, 95% CI: 1.09–1.34; [Figure 2]). However, fat included many subtypes, and different food sources may have different amounts of fat subtypes, which may have led to the high heterogeneity observed in these results (I2 = 75.9%), so we carried out subgroup analyses and a sensitivity analysis simultaneously.
Figure 2: Forest plots of total energy intake, total fat intake, and male subgroup associations with Parkinson’s disease (PD) risk.
High total energy intake and sex were both linked with elevated PD risk, while total fat intake was not associated with PD risk.


Click here to view


Subgroup analyses The subgroup analyses were conducted based on fat subtypes (PUFA, arachidonic acid, cholesterol, n-3 PUFA, n-6 PUFA, α-linolenic acid, linoleic acid, monounsaturated fatty acid [MUFA], saturated fatty acids, and n-3 to n-6 PUFA ratio) to further explore the source of heterogeneity. An association was found between high PUFA intake and reduced PD risk (P = 0.010, OR = 1.03, 95% CI: 0.88–1.20). In contrast, arachidonic acid (P = 0.026, OR = 1.15, 95% CI: 0.97–1.37) and cholesterol (P = 0.002, OR = 1.09, 95% CI: 0.92–1.29) intakes were linked with an elevated PD risk. Moreover, although the results were not significant, consumption of n-3 PUFA (P = 0.071, OR = 0.88, 95% CI: 0.73–1.05), α-linolenic acid (P = 0.06, OR = 0.86, 95% CI: 0.72–1.02), and the n-3 to n-6 PUFA ratio (P = 0.458, OR = 0.89, 95% CI: 0.75–1.06) were all linked with a non-significant trend toward reduced PD risk, while MUFA (P = 0.450, OR = 1.06, 95% CI: 0.91–1.23), linoleic acid (P = 0.053, OR = 1.11, 95% CI: 0.94–1.32), and n-6 PUFA (P = 0.100, OR = 1.15, 95% CI: 0.96–1.36) intakes were associated with a non-significant trend toward higher PD risk. Saturated fatty acid intake (P = 0.619, OR = 1.01, 95% CI: 0.87–1.18) was not associated with PD [Figure 3].
Figure 3: Forest plots of saturated fatty acids, monounsaturated fatty acid (MUFA), high polyunsaturated fatty acids (PUFA), arachidonic acid, n-3 PUFA, α-linolenic acid, n-6 PUFA, linoleic acid, the ratio of n-3 to n-6 PUFA, and cholesterol intake associations with Parkinson’s disease (PD).
There was a consistent link between PUFA consumption and lower PD risk, while higher cholesterol and arachidonic acid intakes were linked with elevated PD risk. Although the results were not significant, consumption of n-3 PUFA, α-linolenic acid, and the n-3 to n-6 PUFA ratio were all linked with a trend toward reduced PD risk, while MUFA, linoleic acid, and n-6 PUFA intakes were associated with a trend toward higher PD risk. Saturated fatty acid intake was not associated with PD.


Click here to view


Publication bias

We did not detect publication bias for studies of either high total energy intake and PD risk or high total fat intake and PD risk, based on a fully adjusted model (P = 0.114). There are two articles that seem farther outside the funnel, possibly caused by the high heterogeneity of both articles. These studies were not excluded, however, because they met the inclusion criteria and Egger’s test gave P > 0.05 [Figure 4].
Figure 4: Publication bias measured by a funnel plot and Egger’s test (P = 0.114).
Two articles are farther outside the funnel; they may have only represented a trend.


Click here to view



  Discussion Top


High dietary fat intake and Parkinson’s disease risk

We found that high total energy intake was linked with elevated PD risk, whereas total fat intake was not. However, we revealed an association between high PFUA and reduced PD risk; in contrast, arachidonic acid and cholesterol intakes were linked with an elevated PD risk. Although the results were not significant, consumption of n-3 PUFA, α-linolenic acid, and the n-3 to n-6 PUFA ratio was all linked with a trend toward reduced PD risk, while MUFA, linoleic acid, n-6 PUFA intakes were associated with a trend toward higher PD risk. Saturated fatty acids were not associated with PD.

Elevated PD risk may result from the consumption of dietary fat, because of its effects involving increased oxidative stress and neuroinflammation, which potentially exacerbate neurotoxin-induced dopaminergic neuron loss. PUFAs are primarily found in the SN2 position of phosphoglycerates in neural cell membranes where, in response to lipid peroxidation, they can give rise to oxygen free radicals (Choi et al., 2005; Shchepinov et al., 2011; Bousquet et al., 2012). PUFAs are also necessary for appropriate glial cell membrane formation, and can further regulate the generation of inflammatory cytokines and prostaglandins (Laye, 2010). Dietary n-3 and n-6 α-linoleic acids are used to synthesize PUFA in cell membranes, and can also give rise to long-chain PUFA via desaturation and elongation (Youdim et al., 2000). In particular, n-3 PUFAs play anti-inflammatory roles, while n-6 PUFAs serve as inflammatory prostaglandin precursors (Dong et al., 2014). Arachidonic acid, one of the major types of PUFA present in the brain, is one of several key types of n-6 PUFAs (Porter et al., 1995; Simopoulos, 1999; Hadders-Algra, 2008), and linoleic acid is also a subtype of n-6 PUFA. In the present study, PUFAs were linked with a decreased risk of PD, in contrast to the expected increased risk, and this result suggests that the n-3/n-6 ratio might be an important factor when assessing PD development risk. If intake of n-3 is greater than n-6 intake, the risk of PD may be reduced. Although our study revealed that there was no significant relationship between n-3/n-6 PUFA ratio and PD risk, there was a non-significant trend toward reduced risk of PD when the n-3/n-6 PUFA ratio was higher.

The brain contains the most cholesterol of any organ, and it is capable of synthesizing cholesterol (Noguchi et al., 2014). However, few studies have reported that cholesterol-rich diets drive neurotoxin-induced dopaminergic neuron loss (Choi et al., 2005; Bousquet et al., 2012). Elevated cholesterol levels can contribute to oxidative stress (Pappolla et al., 2002; Thirumangalakudi et al., 2008; Prasanthi et al., 2010) and neuroinflammation (Thirumangalakudi et al., 2008; Ullrich et al., 2010; Pirchl et al., 2012). In addition, high levels of cholesterol can cause mitochondrial dysfunction and influence α-synuclein aggregation (Bar-On et al., 2008). Therefore, cholesterol may be a risk factor for neurodegenerative disease in general (Vance, 2012; Martin et al., 2014), which is consistent with our results.

There are many factors that affect the results of our analysis. Some come from the original literature, and were possibly caused by defects in research design. Of the reviewed references, only Kamel et al. (2014) provided evidence that α-linolenic acid and linoleic acid intakes decreased PD risk. Others reported that a moderately reduced PD risk was not associated with α-linolenic acid or linoleic acid intake (Porter et al., 1995; Youdim et al., 2000; Ikemoto et al., 2001; Levant et al., 2007; Hadders-Algra, 2008; Laye, 2010; Shchepinov et al., 2011). In addition, only Dong et al. (2014) provided evidence for a positive relationship between dietary PUFA intake and PD risk. Some PUFA are associated with specific functions of the human body, and although N-3 must be obtained from the diet, other fatty acids can be synthesized in the body; thus, we cannot rule out the effects of self-synthesized fatty acids on our results. Moreover, exposure assessments in the included references were all obtained via different questionnaires, such as diet history questionnaires and food frequency questionnaires. This may have led to variation in survey accuracy, because dietary consumption does not necessarily translate to biological nutritional status.

Limitations

This study has certain limitations. First, a more careful analysis of other dietary PUFA fats is needed to confirm the protective PUFA concentrations that are necessary to reduce PD risk, and to confirm the adverse results of eating other types of fats. Second, we did not pool vitamins or other types of nutrition in this study, and therefore potentially overlooked their roles as antioxidants in protecting against PD. Third, the food sources of each fat were not considered, which may have led to the high heterogeneity that we found. Fourth, we did not consider the contributions of regionalism and dietary customs, which also may have influenced our results.

Conclusions and future directions

This meta-analysis revealed that higher energy intake is linked with elevated PD risk. We also demonstrated that high PUFA was associated with reduced PD risk; in contrast, arachidonic acid and cholesterol intakes were linked with an elevated risk of PD. Although the results were not significant, consumption of n-3 PUFA, α-linolenic acid, and the n-3/n-6 PUFA ratio were all linked with a trend toward reduced PD risk, while MUFA, linoleic acid, and n-6 PUFA intakes were associated with a trend toward higher PD risk. Saturated fatty acids were not associated with PD risk.

Further research is necessary to confirm the link between dietary fat and PD risk, and other nutritional antioxidants such as vitamins should also be considered in this context. New studies should focus on the dietary sources of each fat (such as the intake of the various PUFAs, and the n-3/n-6 intake ratio), as well as how regional dietary variations may influence these outcomes, to avoid high heterogeneity. [62]

Author contributions: Study design, data analysis, manuscript revision: QS; writing manuscript, performing search, screening retrieved papers against inclusion criteria, data extraction from selected papers, data analysis: YQ; performing literature search, data analysis, eligible paper selection: XC, MMX. All authors approved the final version of the paper.

Conflicts of interest: The authors declare that there are no conflicts of interest associated with this manuscript.

Financial support: This work was financially supported by the National Natural Science Foundation of China, No. 31200868 (to XC). The funding source had no role in study conception and design, data analysis or interpretation, paper writing or deciding to submit this paper for publication.

Reporting Statement: This study followed the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) statement.

Copyright license agreement: The Copyright License Agreement has been signed by all authors before publication.

Data sharing statement: Datasets analyzed during the current study are available from the corresponding author on reasonable request.

Plagiarism check: Checked twice by iThenticate.

Peer review: Externally peer reviewed.

Open peer reviewer: Anupom Borah, Assam University, India.

Additional files:

Additional Table 1: Newcastle-Ottawa Scale Assessment of Case-Control Studies[Additional file 1].

Additional Table 2: Newcastle-Ottawa Scale Assessment of Cohort Studies[Additional file 2].

Additional file 1: Open peer review report 1[Additional file 3].



 
  References Top

1.
Akbar M, Kim HY (2002) Protective effects of docosahexaenoic acid in staurosporine-induced apoptosis: involvement of phosphatidylinositol-3 kinase pathway. J Neurochem 82:655-665.  Back to cited text no. 1
    
2.
Akbar M, Calderon F, Wen Z, Kim HY (2005) Docosahexaenoic acid: a positive modulator of Akt signaling in neuronal survival. Proc Natl Acad Sci U S A 102:10858-10863.  Back to cited text no. 2
    
3.
Bar-On P, Crews L, Koob AO, Mizuno H, Adame A, Spencer B, Masliah E (2008) Statins reduce neuronal alpha-synuclein aggregation in in vitro models of Parkinson’s disease. J Neurochem 105:1656-1667.  Back to cited text no. 3
    
4.
Bousquet M, St-Amour I, Vandal M, Julien P, Cicchetti F, Calon F (2012) High-fat diet exacerbates MPTP-induced dopaminergic degeneration in mice. Neurobiol Dis 45:529-538.  Back to cited text no. 4
    
5.
Bowen RA, Clandinin MT (2002) Dietary low linolenic acid compared with docosahexaenoic acid alter synaptic plasma membrane phospholipid fatty acid composition and sodium-potassium ATPase kinetics in developing rats. J Neurochem 83:764-774.  Back to cited text no. 5
    
6.
Calon F, Lim GP, Morihara T, Yang F, Ubeda O, Salem N, Jr., Frautschy SA, Cole GM (2005) Dietary n-3 polyunsaturated fatty acid depletion activates caspases and decreases NMDA receptors in the brain of a transgenic mouse model of Alzheimer’s disease. Eur J Neurosci 22:617-626.  Back to cited text no. 6
    
7.
Chaturvedi S, Ostbye T, Stoessl AJ, Merskey H, Hachinski V (1995) Environmental exposures in elderly Canadians with Parkinson’s disease. Can J Neurol Sci 22:232-234.  Back to cited text no. 7
    
8.
Chen H, Zhang SM, Hernan MA, Willett WC, Ascherio A (2003) Dietary intakes of fat and risk of Parkinson’s disease. Am J Epidemiol 157:1007-1014.  Back to cited text no. 8
    
9.
Choi JY, Jang EH, Park CS, Kang JH (2005) Enhanced susceptibility to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity in high-fat diet-induced obesity. Free Radic Biol Med 38:806-816.  Back to cited text no. 9
    
10.
Cota GF, de Sousa MR, Fereguetti TO, Rabello A (2013) Efficacy of anti-leishmania therapy in visceral leishmaniasis among HIV infected patients: a systematic review with indirect comparison. PLoS Negl Trop Dis 7:e2195.  Back to cited text no. 10
    
11.
Dalfo E, Portero-Otin M, Ayala V, Martinez A, Pamplona R, FeORer I (2005) Evidence of oxidative stress in the neocortex in incidental Lewy body disease. J Neuropathol Exp Neurol 64:816-830.  Back to cited text no. 11
    
12.
de Lau LM, Bornebroek M, Witteman JC, Hofman A, Koudstaal PJ, Breteler MM (2005) Dietary fatty acids and the risk of Parkinson disease: the Rotterdam study. Neurology 64:2040-2045.  Back to cited text no. 12
    
13.
Di Monte DA, Lavasani M, Manning-Bog AB (2002) Environmental factors in Parkinson’s disease. Neurotoxicology 23:487-502.  Back to cited text no. 13
    
14.
Dick FD, De Palma G, Ahmadi A, Scott NW, Prescott GJ, Bennett J, Semple S, Dick S, Counsell C, Mozzoni P, Haites N, Wettinger SB, Mutti A, Otelea M, Seaton A, Soderkvist P, Felice A, Geoparkinson study (2007) Environmental risk factors for Parkinson’s disease and parkinsonism: the Geoparkinson study. Occup Environ Med 64:666-672.  Back to cited text no. 14
    
15.
Dong J, Beard JD, Umbach DM, Park Y, Huang X, Blair A, Kamel F, Chen H (2014) Dietary fat intake and risk for Parkinson’s disease. Mov Disord 29:1623-1630.  Back to cited text no. 15
    
16.
Fabelo N, Martin V, Santpere G, Marin R, ToORent L, FeORer I, Diaz M (2011) Severe alterations in lipid composition of frontal cortex lipid rafts from Parkinson’s disease and incidental Parkinson’s disease. Mol Med 17:1107-1118.  Back to cited text no. 16
    
17.
Fang X, An P, Wang H, Wang X, Shen X, Li X, Min J, Liu S, Wang F (2015) Dietary intake of heme iron and risk of cardiovascular disease: a dose-response meta-analysis of prospective cohort studies. Nutr Metab Cardiovasc Dis 25:24-35.  Back to cited text no. 17
    
18.
Gao X, Chen H, Fung TT, Logroscino G, Schwarzschild MA, Hu FB, Ascherio A (2007) Prospective study of dietary pattern and risk of Parkinson disease. Am J Clin Nutr 86:1486-1494.  Back to cited text no. 18
    
19.
Hadders-Algra M (2008) Prenatal long-chain polyunsaturated fatty acid status: the importance of a balanced intake of docosahexaenoic acid and arachidonic acid. J Perinat Med 36:101-109.  Back to cited text no. 19
    
20.
Hashimoto M, Hossain S, Shimada T, Sugioka K, Yamasaki H, Fujii Y, Ishibashi Y, Oka J, Shido O (2002) Docosahexaenoic acid provides protection from impairment of learning ability in Alzheimer’s disease model rats. J Neurochem 81:1084-1091.  Back to cited text no. 20
    
21.
Hellenbrand W, Boeing H, Robra BP, Seidler A, Vieregge P, Nischan P, Joerg J, Oertel WH, Schneider E, Ulm G (1996) Diet and Parkinson’s disease. II: a possible role for the past intake of specific nutrients. Results from a self-administered food-frequency questionnaire in a case-control study. Neurology 47:644-650.  Back to cited text no. 21
    
22.
Ikemoto A, Ohishi M, Sato Y, Hata N, Misawa Y, Fujii Y, Okuyama H (2001) Reversibility of n-3 fatty acid deficiency-induced alterations of learning behavior in the rat: level of n-6 fatty acids as another critical factor. J Lipid Res 42:1655-1663.  Back to cited text no. 22
    
23.
Jenner P (2003) Oxidative stress in Parkinson’s disease. Ann Neurol 53 Suppl 3:S26-36.  Back to cited text no. 23
    
24.
Kamel F, Goldman SM, Umbach DM, Chen H, Richardson G, Barber MR, Meng C, MaORas C, Korell M, Kasten M, Hoppin JA, Comyns K, Chade A, Blair A, Bhudhikanok GS, Webster Ross G, William Langston J, Sandler DP, Tanner CM (2014) Dietary fat intake, pesticide use, and Parkinson’s disease. Parkinsonism Relat Disord 20:82-87.  Back to cited text no. 24
    
25.
Kirkey KL, Johnson CC, Rybicki BA, Peterson EL, Kortsha GX, Gorell JM (2001) Occupational categories at risk for Parkinson’s disease. Am J Ind Med 39:564-571.  Back to cited text no. 25
    
26.
Kyrozis A, Ghika A, Stathopoulos P, Vassilopoulos D, Trichopoulos D, Trichopoulou A (2013) Dietary and lifestyle variables in relation to incidence of Parkinson’s disease in Greece. Eur J Epidemiol 28:67-77.  Back to cited text no. 26
    
27.
Laye S (2010) Polyunsaturated fatty acids, neuroinflammation and well being. Prostaglandins Leukot Essent Fatty Acids 82:295-303.  Back to cited text no. 27
    
28.
Levant B, Ozias MK, Carlson SE (2007) Specific brain regions of female rats are differentially depleted of docosahexaenoic acid by reproductive activity and an (n-3) fatty acid-deficient diet. J Nutr 137:130-134.  Back to cited text no. 28
    
29.
Li AA, Mink PJ, McIntosh LJ, Teta MJ, Finley B (2005) Evaluation of epidemiologic and animal data associating pesticides with Parkinson’s disease. J Occup Environ Med 47:1059-1087.  Back to cited text no. 29
    
30.
Liu Q, Xu Y, Wan W, Ma Z (2018) An unexpected improvement in spatial learning and memory ability in alpha-synuclein A53T transgenic mice. J Neural Transm (Vienna) 125:203-210.  Back to cited text no. 30
    
31.
Logroscino G, Marder K, Cote L, Tang MX, Shea S, Mayeux R (1996) Dietary lipids and antioxidants in Parkinson’s disease: a population-based, case-control study. Ann Neurol 39:89-94.  Back to cited text no. 31
    
32.
Logroscino G, Marder K, Graziano J, Freyer G, Slavkovich V, Lojacono N, Cote L, Mayeux R (1998) Dietary iron, animal fats, and risk of Parkinson’s disease. Mov Disord 13:13-16.  Back to cited text no. 32
    
33.
Ma ZG, Xu J, Liu TW (2015) Quantitative assessment of the association between fibroblast growth factor 20 rs1721100 C/G polymorphism and the risk of sporadic Parkinson’s diseases: a meta-analysis. Neurol Sci 36:47-51.  Back to cited text no. 33
    
34.
Ma ZG, Liu TW, Bo YL (2015) HLA-DRA rs3129882 A/G polymorphism was not a risk factor for Parkinson’s disease in Chinese-based populations: a meta-analysis. Int J Neurosci 125:241-246.  Back to cited text no. 34
    
35.
Ma ZG, He F, Xu J (2015) Quantitative assessment of the association between GAK rs1564282 C/T polymorphism and the risk of Parkinson’s disease. J Clin Neurosci 22:1077-1080.  Back to cited text no. 35
    
36.
Martin MG, Pfrieger F, Dotti CG (2014) Cholesterol in brain disease: sometimes determinant and frequently implicated. EMBO Rep 15:1036-1052.  Back to cited text no. 36
    
37.
Miyake Y, Sasaki S, Tanaka K, Fukushima W, Kiyohara C, Tsuboi Y, Yamada T, Oeda T, Miki T, Kawamura N, Sakae N, Fukuyama H, Hirota Y, Nagai M, Fukuoka Kinki Parkinson’s Disease Study G (2010) Dietary fat intake and risk of Parkinson’s disease: a case-control study in Japan. J Neurol Sci 288:117-122.  Back to cited text no. 37
    
38.
Martinez B, Peplow PV (2018) Neuroprotection by immunomodulatory agents in animal models of Parkinson’s disease. Neural Regen Res 13:1493-1506.  Back to cited text no. 38
    
39.
Noguchi N, Saito Y, Urano Y (2014) Diverse functions of 24(S)-hydroxycholesterol in the brain. Biochem Biophys Res Commun 446:692-696.  Back to cited text no. 39
    
40.
Noseworthy MD, Bray TM (1998) Effect of oxidative stress on brain damage detected by MRI and in vivo 31P-NMR. Free Radic Biol Med 24:942-951.  Back to cited text no. 40
    
41.
Pappolla MA, Smith MA, Bryant-Thomas T, Bazan N, Petanceska S, PeORy G, Thal LJ, Sano M, Refolo LM (2002) Cholesterol, oxidative stress, and Alzheimer’s disease: expanding the horizons of pathogenesis. Free Radic Biol Med 33:173-181.  Back to cited text no. 41
    
42.
Pirchl M, Ullrich C, Sperner-Unterweger B, Humpel C (2012) Homocysteine has anti-inflammatory properties in a hypercholesterolemic rat model in vivo. Mol Cell Neurosci 49:456-463.  Back to cited text no. 42
    
43.
Porter NA, Caldwell SE, Mills KA (1995) Mechanisms of free radical oxidation of unsaturated lipids. Lipids 30:277-290.  Back to cited text no. 43
    
44.
Powers KM, Smith-Weller T, Franklin GM, Longstreth WT, Jr., Swanson PD, Checkoway H (2009) Dietary fats, cholesterol and iron as risk factors for Parkinson’s disease. Parkinsonism Relat Disord 15:47-52.  Back to cited text no. 44
    
45.
Prasanthi JR, Dasari B, Marwarha G, Larson T, Chen X, Geiger JD, Ghribi O (2010) Caffeine protects against oxidative stress and Alzheimer’s disease-like pathology in rabbit hippocampus induced by cholesterol-enriched diet. Free Radic Biol Med 49:1212-1220.  Back to cited text no. 45
    
46.
Priyadarshi A, Khuder SA, Schaub EA, Priyadarshi SS (2001) Environmental risk factors and Parkinson’s disease: a metaanalysis. Environ Res 86:122-127.  Back to cited text no. 46
    
47.
Sampaio TB, Savall AS, Gutierrez MEZ, Pinton S (2017) Neurotrophic factors in Alzheimer’s and Parkinson’s diseases: implications for pathogenesis and therapy. Neural Regen Res 12:549-557.  Back to cited text no. 47
    
48.
Schapira AH (2007) Mitochondrial dysfunction in Parkinson’s disease. Cell Death Differ 14:1261-1266.  Back to cited text no. 48
    
49.
Schatzkin A, Subar AF, Thompson FE, Harlan LC, Tangrea J, Hollenbeck AR, Hurwitz PE, Coyle L, Schussler N, Michaud DS, Freedman LS, Brown CC, Midthune D, Kipnis V (2001) Design and serendipity in establishing a large cohort with wide dietary intake distributions: the National Institutes of Health-American Association of Retired Persons Diet and Health Study. Am J Epidemiol 154:1119-1125.  Back to cited text no. 49
    
50.
Shchepinov MS, Chou VP, Pollock E, Langston JW, Cantor CR, Molinari RJ, Manning-Bog AB (2011) Isotopic reinforcement of essential polyunsaturated fatty acids diminishes nigrostriatal degeneration in a mouse model of Parkinson’s disease. Toxicol Lett 207:97-103.  Back to cited text no. 50
    
51.
Simopoulos AP (1999) Essential fatty acids in health and chronic disease. Am J Clin Nutr 70:560S-569S.  Back to cited text no. 51
    
52.
Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, Moher D, Becker BJ, Sipe TA, Thacker SB (2000) Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 283:2008-2012.  Back to cited text no. 52
    
53.
Taylor CA, Saint-Hilaire MH, Cupples LA, Thomas CA, Burchard AE, Feldman RG, Myers RH (1999) Environmental, medical, and family history risk factors for Parkinson’s disease: a New England-based case control study. Am J Med Genet 88:742-749.  Back to cited text no. 53
    
54.
Thirumangalakudi L, Prakasam A, Zhang R, Bimonte-Nelson H, Sambamurti K, Kindy MS, Bhat NR (2008) High cholesterol-induced neuroinflammation and amyloid precursor protein processing coORelate with loss of working memory in mice. J Neurochem 106:475-485.  Back to cited text no. 54
    
55.
Ullrich C, Pirchl M, Humpel C (2010) Hypercholesterolemia in rats impairs the cholinergic system and leads to memory deficits. Mol Cell Neurosci 45:408-417.  Back to cited text no. 55
    
56.
Vance JE (2012) Dysregulation of cholesterol balance in the brain: contribution to neurodegenerative diseases. Dis Model Mech 5:746-755.  Back to cited text no. 56
    
57.
Wang QM, Xu YY, Liu S, Ma ZG (2017) Isradipine attenuates MPTP-induced dopamine neuron degeneration by inhibiting up-regulation of L-type calcium channels and iron accumulation in the substantia nigra of mice. Oncotarget 8:47284-47295.  Back to cited text no. 57
    
58.
Wullner U, Klockgether T (2003) Inflammation in Parkinson’s disease. J Neurol 250 Suppl 1:I35-I38.  Back to cited text no. 58
    
59.
Youdim KA, Martin A, Joseph JA (2000) Essential fatty acids and the brain: possible health implications. Int J Dev Neurosci 18:383-399.  Back to cited text no. 59
    
60.
Zecca L, Youdim MB, Riederer P, Connor JR, Crichton OR (2004) Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 5:863-873.  Back to cited text no. 60
    
61.
Zhang J, Yu KF. What’s the relative risk? (1998) A method of correcting the odds ratio in cohort studies of common outcomes. JAMA 280:1690-1691.  Back to cited text no. 61
    
62.
Zorzon M, Capus L, Pellegrino A, Cazzato G, Zivadinov R (2002) Familial and environmental risk factors in Parkinson’s disease: a case-control study in north-east Italy. Acta Neurol Scand 105:77-82.  Back to cited text no. 62
    

P-Reviewer: Borah A; C-Editor: Zhao M; S-Editors: Wang J, Li CH; L-Editors: Gardner B, Yajima W, Qiu Y, Song LP; T-Editor: Jia Y


    Figures

  [Figure 1], [Figure 2], [Figure 3], [Figure 4]
 
 
    Tables

  [Table 1], [Table 2]



 

Top
 
 
  Search
 
Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Access Statistics
Email Alert *
Add to My List *
* Registration required (free)

 
  In this article
Abstract
Introduction
Data and Methods
Results
Discussion
References
Article Figures
Article Tables

 Article Access Statistics
    Viewed338    
    Printed2    
    Emailed0    
    PDF Downloaded102    
    Comments [Add]    

Recommend this journal


[TAG2]
[TAG3]
[TAG4]