• Users Online: 1282
  • Home
  • Print this page
  • Email this page
REVIEW
Year : 2020  |  Volume : 15  |  Issue : 3  |  Page : 425-437

Taking central nervous system regenerative therapies to the clinic: curing rodents versus nonhuman primates versus humans


1 Departments of Psychiatry and Neurology Services, Center for Neural Systems Investigations, Center for Morphometric Analysis, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital; Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; University College of London Division of Surgery & Interventional Science, Center for Nanotechnology & Regenerative Medicine, University College London, London, UK
2 University College of London Division of Surgery & Interventional Science, Center for Nanotechnology & Regenerative Medicine, University College London, London, UK; Department of Physical Medicine and Rehabilitation, The University of Texas Health Science Center at Houston; The Institute for Rehabilitation and Research Memorial Hermann Research Center, The Institute for Rehabilitation and Research Memorial Hermann Hospital, Houston, TX, USA
3 Departments of Psychiatry and Neurology Services, Center for Neural Systems Investigations, Center for Morphometric Analysis, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital; Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School; Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA

Correspondence Address:
Nikos Makris
Departments of Psychiatry and Neurology Services, Center for Neural Systems Investigations, Center for Morphometric Analysis, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital; Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School; Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA
USA
Login to access the Email id

Source of Support: This work was supported by Onassis Foundation (to MT); the National Center for Complementary and Integrative Health (NCCIH), No. R21AT008865 (to NM); National Institute of Aging (NIA)/National Institute of Mental Health (NIMH), No. R01AG042512 (to NM), Conflict of Interest: None


DOI: 10.4103/1673-5374.266048

Rights and Permissions

The central nervous system is known to have limited regenerative capacity. Not only does this halt the human body’s reparative processes after central nervous system lesions, but it also impedes the establishment of effective and safe therapeutic options for such patients. Despite the high prevalence of stroke and spinal cord injury in the general population, these conditions remain incurable and place a heavy burden on patients’ families and on society more broadly. Neuroregeneration and neural engineering are diverse biomedical fields that attempt reparative treatments, utilizing stem cells-based strategies, biologically active molecules, nanotechnology, exosomes and highly tunable biodegradable systems (e.g., certain hydrogels). Although there are studies demonstrating promising preclinical results, safe clinical translation has not yet been accomplished. A key gap in clinical translation is the absence of an ideal animal or ex vivo model that can perfectly simulate the human microenvironment, and also correspond to all the complex pathophysiological and neuroanatomical factors that affect functional outcomes in humans after central nervous system injury. Such an ideal model does not currently exist, but it seems that the nonhuman primate model is uniquely qualified for this role, given its close resemblance to humans. This review considers some regenerative therapies for central nervous system repair that hold promise for future clinical translation. In addition, it attempts to uncover some of the main reasons why clinical translation might fail without the implementation of nonhuman primate models in the research pipeline.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed255    
    Printed0    
    Emailed0    
    PDF Downloaded142    
    Comments [Add]    

Recommend this journal