• Users Online: 918
  • Home
  • Print this page
  • Email this page

    Article Cited by others

INVITED REVIEW

Function of microglia and macrophages in secondary damage after spinal cord injury

Zhou Xiang, He Xijing, Ren Yi

Year : 2014| Volume: 9| Issue : 20 | Page no: 1787-1795

   This article has been cited by
 
1 Curcumin Can Improve Spinal Cord Injury by Inhibiting TGF-ß-SOX9 Signaling Pathway
Jiaying Yuan,Benson O. A. Botchway,Yong Zhang,Xiaoning Tan,Xizhi Wang,Xuehong Liu
Cellular and Molecular Neurobiology. 2019;
[Pubmed]  [Google Scholar] [DOI]
2 A Causal Relationship in Spinal Cord Injury Rat Model Between Microglia Activation and EGFR/MAPK Detected by Overexpression of MicroRNA-325-3p
Penghui Yan,Xuejian Wu,Xiaokang Liu,Yingchun Cai,Chenglong Shao,Guangduo Zhu
Journal of Molecular Neuroscience. 2019;
[Pubmed]  [Google Scholar] [DOI]
3 Traumatic Spinal Cord Injury: An Overview of Pathophysiology, Models and Acute Injury Mechanisms
Arsalan Alizadeh,Scott Matthew Dyck,Soheila Karimi-Abdolrezaee
Frontiers in Neurology. 2019; 10
[Pubmed]  [Google Scholar] [DOI]
4 Stress-Activated Protein Kinases in Spinal Cord Injury: Focus on Roles of p38
Yoshitoshi Kasuya,Hiroki Umezawa,Masahiko Hatano
International Journal of Molecular Sciences. 2018; 19(3): 867
[Pubmed]  [Google Scholar] [DOI]
5 CSF1R Inhibition Reduces Microglia Proliferation, Promotes Tissue Preservation and Improves Motor Recovery After Spinal Cord Injury
Yannick Nicolas Gerber,Guillaume Patrick Saint-Martin,Claire Mathilde Bringuier,Sylvain Bartolami,Christophe Goze-Bac,Harun Najib Noristani,Florence Evelyne Perrin
Frontiers in Cellular Neuroscience. 2018; 12
[Pubmed]  [Google Scholar] [DOI]
6 MiR-10 targets NgR to modulate the proliferation of microglial cells and the secretion of inflammatory cytokines
Weiguo Wang,Ruisen Zhan,Jiahui Zhou,Jianlong Wang,Shijie Chen
Experimental and Molecular Pathology. 2018;
[Pubmed]  [Google Scholar] [DOI]
7 miR-199b-5p Regulates Immune-Mediated Allograft Rejection after Lung Transplantation Through the GSK3ß and NF-?B Pathways
Linhai Zhu,Haichao Xu,Wang Lv,Zhehao He,Peng Ye,Yiqing Wang,Jian Hu
Inflammation. 2018;
[Pubmed]  [Google Scholar] [DOI]
8 Dcf1 Deficiency Attenuates the Role of Activated Microglia During Neuroinflammation
Jiao Wang,Jie Li,Qian Wang,Yanyan Kong,Fangfang Zhou,Qian Li,Weihao Li,Yangyang Sun,Yanli Wang,Yihui Guan,Minghong Wu,Tieqiao Wen
Frontiers in Molecular Neuroscience. 2018; 11
[Pubmed]  [Google Scholar] [DOI]
9 Transplantation of rat-derived microglial cells promotes functional recovery in a rat model of spinal cord injury
Dewei Kou,Tianmi Li,Hong Liu,Chuansheng Liu,Yanwei Yin,Xing Wu,Tengbo Yu
Brazilian Journal of Medical and Biological Research. 2018; 51(10)
[Pubmed]  [Google Scholar] [DOI]
10 Neuroimmflammation and microglia in glaucoma: time for a paradigm shift
Xin Wei,Kin-Sang Cho,Eric F. Thee,Martine J. Jager,Dong Feng Chen
Journal of Neuroscience Research. 2018;
[Pubmed]  [Google Scholar] [DOI]
11 Biochemical events related to glial response in spinal cord injury
Catalina Lapuente-Chala,Angel Céspedes-Rubio
Revista de la Facultad de Medicina. 2018; 66(2): 269
[Pubmed]  [Google Scholar] [DOI]
12 Recent update on basic mechanisms of spinal cord injury
Syed A. Quadri,Mudassir Farooqui,Asad Ikram,Atif Zafar,Muhammad Adnan Khan,Sajid S. Suriya,Chad F. Claus,Brian Fiani,Mohammed Rahman,Anirudh Ramachandran,Ian I. T. Armstrong,Muhammad A. Taqi,Martin M. Mortazavi
Neurosurgical Review. 2018;
[Pubmed]  [Google Scholar] [DOI]
13 Microenvironment Imbalance of Spinal Cord Injury
Baoyou Fan,Zhijian Wei,Xue Yao,Guidong Shi,Xin Cheng,Xianhu Zhou,Hengxing Zhou,Guangzhi Ning,Xiaohong Kong,Shiqing Feng
Cell Transplantation. 2018; 27(6): 853
[Pubmed]  [Google Scholar] [DOI]
14 Long noncoding RNA MALAT1 contributes to inflammatory response of microglia following spinal cord injury via the modulation of a miR-199b/IKKß/NF-?B signaling pathway
Heng-Jun Zhou,Li-Qing Wang,Duan-Bu Wang,Jian-Bo Yu,Yu Zhu,Qing-Sheng Xu,Xiu-Jue Zheng,Ren-Ya Zhan
American Journal of Physiology-Cell Physiology. 2018; 315(1): C52
[Pubmed]  [Google Scholar] [DOI]
15 Oral Administration of a-Asarone Promotes Functional Recovery in Rats With Spinal Cord Injury
Min-Jae Jo,Hemant Kumar,Hari P. Joshi,Hyemin Choi,Wan-Kyu Ko,J. M. Kim,Sean S. S. Hwang,Song Y. Park,Seil Sohn,Alvin B. Bello,Kyoung-Tae Kim,Soo-Hong Lee,Xiang Zeng,Inbo Han
Frontiers in Pharmacology. 2018; 9
[Pubmed]  [Google Scholar] [DOI]
16 Activation of A2A Receptor by PDRN Reduces Neuronal Damage and Stimulates WNT/ß-CATENIN Driven Neurogenesis in Spinal Cord Injury
Natasha Irrera,Vincenzo Arcoraci,Federica Mannino,Giovanna Vermiglio,Giovanni Pallio,Letteria Minutoli,Gianluca Bagnato,Giuseppe Pio Anastasi,Emanuela Mazzon,Placido Bramanti,Francesco Squadrito,Domenica Altavilla,Alessandra Bitto
Frontiers in Pharmacology. 2018; 9
[Pubmed]  [Google Scholar] [DOI]
17 Dexmedetomidine Mitigates Microglia-Mediated Neuroinflammation through Upregulation of Programmed Cell Death Protein 1 in a Rat Spinal Cord Injury Model
Hefan He,Yingying Zhou,Yilin Zhou,Jiayuan Zhuang,Xu He,Siyuan Wang,Wenping Lin
Journal of Neurotrauma. 2018;
[Pubmed]  [Google Scholar] [DOI]
18 Biomaterials and gene manipulation in stem-cell-based therapies for spinal cord injury
Jiayi Wang,Wei Zou,Jingyun Ma,Jing Liu
Stem Cells and Development. 2018;
[Pubmed]  [Google Scholar] [DOI]
19 Regulatory effects of dermal papillary pluripotent stem cells on polarization of macrophages from M1 to M2 phenotype in vitro
Meiying Li,Jiayi Xu,Xianglin Mei,Guangfan Chi,Lisha Li,Yaolin Song,Xia He,Yulin Li
Transplant Immunology. 2018;
[Pubmed]  [Google Scholar] [DOI]
20 Retracing your footsteps: developmental insights to spinal network plasticity following injury
C. Jean-Xavier,S. A. Sharples,K. A. Mayr,A. P. Lognon,P. J. Whelan
Journal of Neurophysiology. 2018; 119(2): 521
[Pubmed]  [Google Scholar] [DOI]
21 hucMSC derived exosomes promote functional recovery in spinal cord injury mice via attenuating inflammation
Guodong Sun,Guangqiang Li,Dehai Li,Wanjun Huang,Renwen Zhang,Hua Zhang,Yuanyuan Duan,Baocheng Wang
Materials Science and Engineering: C. 2018; 89: 194
[Pubmed]  [Google Scholar] [DOI]
22 Activating Adiponectin Signaling with Exogenous AdipoRon Reduces Myelin Lipid Accumulation and Suppresses Macrophage Recruitment after Spinal Cord Injury
Qishuang Zhou,Hongkai Xiang,Ang Li,Wu Lin,Zhaoshuai Huang,Junxiu Guo,Pingjie Wang,Yijie Chi,Ke Xiang,Yunsheng Xu,Libing Zhou,Kwok-Fai So,Xiaoming Chen,Xin Sun,Yi Ren
Journal of Neurotrauma. 2018;
[Pubmed]  [Google Scholar] [DOI]
23 The Role of Microglia in Retinal Neurodegeneration: Alzheimeræs Disease, Parkinson, and Glaucoma
Ana I. Ramirez,Rosa de Hoz,Elena Salobrar-Garcia,Juan J. Salazar,Blanca Rojas,Daniel Ajoy,Inés López-Cuenca,Pilar Rojas,Alberto Triviño,José M. Ramírez
Frontiers in Aging Neuroscience. 2017; 9
[Pubmed]  [Google Scholar] [DOI]
24 Glucocorticoid programming of neuroimmune function
David J. Walker,Karen A. Spencer
General and Comparative Endocrinology. 2017;
[Pubmed]  [Google Scholar] [DOI]
25 Myelin as an inflammatory mediator: Myelin interactions with complement, macrophages, and microglia in spinal cord injury
Timothy J. Kopper,John C. Gensel
Journal of Neuroscience Research. 2017;
[Pubmed]  [Google Scholar] [DOI]
26 Combine effect of Chondroitinase ABC and low level laser (660 nm) on spinal cord injury model in adult male rats
Atousa Janzadeh,Arash Sarveazad,Mahmoud Yousefifard,Sima Dameni,Fazel Sahraneshin Samani,Kobra Mokhtarian,Farinaz Nasirinezhad
Neuropeptides. 2017;
[Pubmed]  [Google Scholar] [DOI]
27 Biomaterials for Local, Controlled Drug Delivery to the Injured Spinal Cord
Alexis M. Ziemba,Ryan J. Gilbert
Frontiers in Pharmacology. 2017; 8
[Pubmed]  [Google Scholar] [DOI]
28 The Endocannabinoid System in Local and Systemic Inflammation
Melanie E. M. Kelly,Christian Lehmann,Juan Zhou
Colloquium Series on Integrated Systems Physiology: From Molecule to Function. 2017; 9(2): i
[Pubmed]  [Google Scholar] [DOI]
29 Minocycline targets multiple secondary injury mechanisms in traumatic spinal cord injury
RobertB Shultz,Yinghui Zhong
Neural Regeneration Research. 2017; 12(5): 702
[Pubmed]  [Google Scholar] [DOI]
30 Neural Stem Cell-Conditioned Medium Suppresses Inflammation and Promotes Spinal Cord Injury Recovery
Zhijian Cheng,Dale B. Bosco,Li Sun,Xiaoming Chen,Yunsheng Xu,Wenjiao Tai,Ruth Didier,Jinhua Li,Jianqing Fan,Xijing He,Yi Ren
Cell Transplantation. 2017; 26(3): 469
[Pubmed]  [Google Scholar] [DOI]
31 Genetic and Pharmacological Inhibition of p38a Improves Locomotor Recovery after Spinal Cord Injury
Hiroki Umezawa,Yusuke Naito,Kensuke Tanaka,Kento Yoshioka,Kenichi Suzuki,Tatsuhiko Sudo,Masahiko Hagihara,Masahiko Hatano,Koichiro Tatsumi,Yoshitoshi Kasuya
Frontiers in Pharmacology. 2017; 8
[Pubmed]  [Google Scholar] [DOI]
32 Glial Cells and Their Function in the Adult Brain: A Journey through the History of Their Ablation
Sarah Jäkel,Leda Dimou
Frontiers in Cellular Neuroscience. 2017; 11
[Pubmed]  [Google Scholar] [DOI]
33 HDAC3 inhibition ameliorates spinal cord injury by immunomodulation
Tomoharu Kuboyama,Shalaka Wahane,Yong Huang,Xiang Zhou,Jamie K. Wong,Andrew Koemeter-Cox,Michael Martini,Roland H. Friedel,Hongyan Zou
Scientific Reports. 2017; 7(1)
[Pubmed]  [Google Scholar] [DOI]
34 Methylene Blue Mitigates Acute Neuroinflammation after Spinal Cord Injury through Inhibiting NLRP3 Inflammasome Activation in Microglia
Zhi-Hang Lin,Si-Yuan Wang,Li-Li Chen,Jia-Yuan Zhuang,Qing-Feng Ke,Dan-Rui Xiao,Wen-Ping Lin
Frontiers in Cellular Neuroscience. 2017; 11
[Pubmed]  [Google Scholar] [DOI]
35 Microglial Function during Glucose Deprivation: Inflammatory and Neuropsychiatric Implications
Matthew A. Churchward,Devan R. Tchir,Kathryn G. Todd
Molecular Neurobiology. 2017;
[Pubmed]  [Google Scholar] [DOI]
36 Translational Relevance of Swine Models of Spinal Cord Injury
Dominic T. Schomberg,Gurwattan S. Miranpuri,Abhishek Chopra,Kush Patel,Jennifer J. Meudt,Armando Tellez,Daniel K. Resnick,Dhanansayan Shanmuganayagam
Journal of Neurotrauma. 2016;
[Pubmed]  [Google Scholar] [DOI]
37 Gypenoside AttenuatesßAmyloid-Induced Inflammation in N9 Microglial Cells via SOCS1 Signaling
Hui Cai,Qianlei Liang,Guanqun Ge
Neural Plasticity. 2016; 2016: 1
[Pubmed]  [Google Scholar] [DOI]
38 IL-33 ameliorates Alzheimer’s disease-like pathology and cognitive decline
Amy K. Y. Fu,Kwok-Wang Hung,Michael Y. F. Yuen,Xiaopu Zhou,Deejay S. Y. Mak,Ivy C. W. Chan,Tom H. Cheung,Baorong Zhang,Wing-Yu Fu,Foo Y. Liew,Nancy Y. Ip
Proceedings of the National Academy of Sciences. 2016; 113(19): E2705
[Pubmed]  [Google Scholar] [DOI]
39 Inflammogenesis of Secondary Spinal Cord Injury
M. Akhtar Anwar,Tuqa S. Al Shehabi,Ali H. Eid
Frontiers in Cellular Neuroscience. 2016; 10
[Pubmed]  [Google Scholar] [DOI]
40 Localized inhibition of P2X7R at the spinal cord injury site improves neurogenic bladder dysfunction by decreasing urothelial P2X3R expression in rats
Alvaro Munoz,Iman K. Yazdi,Xiufeng Tang,Carolina Rivera,Nima Taghipour,Robert G Grossman,Timothy B Boone,Ennio Tasciotti
Life Sciences. 2016;
[Pubmed]  [Google Scholar] [DOI]
41 Proteomic Analysis of the Spatio-temporal Based Molecular Kinetics of Acute Spinal Cord Injury Identifies a Time- and Segment-specific Window for Effective Tissue Repair
Stephanie Devaux,Dasa Cizkova,Jusal Quanico,Julien Franck,Serge Nataf,Laurent Pays,Lena Hauberg-Lotte,Peter Maass,Jan H. Kobarg,Firas Kobeissy,Céline Mériaux,Maxence Wisztorski,Lucia Slovinska,Juraj Blasko,Viera Cigankova,Isabelle Fournier,Michel Salzet
Molecular & Cellular Proteomics. 2016; 15(8): 2641
[Pubmed]  [Google Scholar] [DOI]
42 Macrophage polarization: a key event in the secondary phase of acute spinal cord injury
Xiangyi Kong,Jun Gao
Journal of Cellular and Molecular Medicine. 2016;
[Pubmed]  [Google Scholar] [DOI]
43 Intracerebral transplantation of interleukin 13-producing mesenchymal stem cells limits microgliosis, oligodendrocyte loss and demyelination in the cuprizone mouse model
Debbie Le Blon,Caroline Guglielmetti,Chloé Hoornaert,Alessandra Quarta,Jasmijn Daans,Dearbhaile Dooley,Evi Lemmens,Jelle Praet,Nathalie De Vocht,Kristien Reekmans,Eva Santermans,Niel Hens,Herman Goossens,Marleen Verhoye,Annemie Van der Linden,Zwi Berneman,Sven Hendrix,Peter Ponsaerts
Journal of Neuroinflammation. 2016; 13(1)
[Pubmed]  [Google Scholar] [DOI]
44 Downregulation of miR-199b promotes the acute spinal cord injury through IKKß-NF-?B signaling pathway activating microglial cells
Heng-Jun Zhou,Li-Qing Wang,Qing-Sheng Xu,Zuo-Xu Fan,Yu Zhu,Hao Jiang,Xiu-Jue Zheng,Yue-Hui Ma,Ren-Ya Zhan
Experimental Cell Research. 2016; 349(1): 60
[Pubmed]  [Google Scholar] [DOI]
45 Multiple organ dysfunction and systemic inflammation after spinal cord injury: a complex relationship
Xin Sun,Zachary B. Jones,Xiao-ming Chen,Libing Zhou,Kwok-Fai So,Yi Ren
Journal of Neuroinflammation. 2016; 13(1)
[Pubmed]  [Google Scholar] [DOI]
46 The regenerative effects of electromagnetic field on spinal cord injury
Christina L. Ross,Ishaq Syed,Thomas L. Smith,Benjamin S. Harrison
Electromagnetic Biology and Medicine. 2016; : 1
[Pubmed]  [Google Scholar] [DOI]
47 Reactive astrocytes undergo M1 microglia/macrohpages-induced necroptosis in spinal cord injury
Hong Fan,Kun Zhang,Lequn Shan,Fang Kuang,Kun Chen,Keqing Zhu,Heng Ma,Gong Ju,Ya-Zhou Wang
Molecular Neurodegeneration. 2016; 11(1)
[Pubmed]  [Google Scholar] [DOI]
48 Age-dependent defects of alpha-synuclein oligomer uptake in microglia and monocytes
Corinna Bliederhaeuser,Veselin Grozdanov,Anna Speidel,Lisa Zondler,Wolfgang P. Ruf,Hanna Bayer,Martin Kiechle,Marisa S. Feiler,Axel Freischmidt,David Brenner,Anke Witting,Bastian Hengerer,Marcus Fändrich,Albert C. Ludolph,Jochen H. Weishaupt,Frank Gillardon,Karin M. Danzer
Acta Neuropathologica. 2016; 131(3): 379
[Pubmed]  [Google Scholar] [DOI]
49 Immune remodelling of stromal cell grafts in the central nervous system: therapeutic inflammation or (harmless) side-effect?
Debbie Le Blon,Chloé Hoornaert,Jan R. Detrez,Sanne Bevers,Jasmijn Daans,Herman Goossens,Winnok H. De Vos,Zwi Berneman,Peter Ponsaerts
Journal of Tissue Engineering and Regenerative Medicine. 2016;
[Pubmed]  [Google Scholar] [DOI]
50 Modulators of microglia: a patent review
Simonetta Papa,Ilaria Caron,Filippo Rossi,Pietro Veglianese
Expert Opinion on Therapeutic Patents. 2016; 26(4): 427
[Pubmed]  [Google Scholar] [DOI]
51 A functional progesterone receptor is required for immunomodulation, reduction of reactive gliosis and survival of oligodendrocyte precursors in the injured spinal cord
Florencia Labombarda,Ignacio Jure,Susana Gonzalez,Analia Lima,Paulina Roig,Rachida Guennoun,Michael Schumacher,Alejandro F. De Nicola
The Journal of Steroid Biochemistry and Molecular Biology. 2015; 154: 274
[Pubmed]  [Google Scholar] [DOI]
52 Enfermedades de la médula espinal. Síndromes medulares
I. Casado Naranjo,J. Mata Gómez,R. Romero Sevilla,J.C. Portilla Cuenca
Medicine - Programa de Formación Médica Continuada Acreditado. 2015; 11(78): 4667
[Pubmed]  [Google Scholar] [DOI]
53 Protocatechuic Acid Inhibits Inflammatory Responses in LPS-Stimulated BV2 Microglia via NF-?B and MAPKs Signaling Pathways
Huan-yu Wang,Hong Wang,Jin-huan Wang,Qiong Wang,Quan-feng Ma,Yi-yang Chen
Neurochemical Research. 2015; 40(8): 1655
[Pubmed]  [Google Scholar] [DOI]
54 From demyelination to remyelination: The road toward therapies for spinal cord injury
Florentia Papastefanaki,Rebecca Matsas
Glia. 2015; 63(7): 1101
[Pubmed]  [Google Scholar] [DOI]
55 Incorporation of Retinoic Acid Releasing Microspheres into Pluripotent Stem Cell Aggregates for Inducing Neuronal Differentiation
Jose Carlos Gomez,John M. Edgar,Andrew M. Agbay,Emma Bibault,Amy Montgomery,Nima Khadem Mohtaram,Stephanie M. Willerth
Cellular and Molecular Bioengineering. 2015; 8(3): 307
[Pubmed]  [Google Scholar] [DOI]

 

Read this article