• Users Online: 741
  • Home
  • Print this page
  • Email this page

 Table of Contents  
Year : 2014  |  Volume : 9  |  Issue : 15  |  Page : 1446-1452

Neuroprotective effect of pretreatment with ganoderma lucidum in cerebral ischemia/reperfusion injury in rat hippocampus

1 Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province; Department of Medical Psychology, Taishan Medical University, Taian, Shandong Province, China
2 Department of Medical Psychology, Taishan Medical University, Taian, Shandong Province, China
3 Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province, China

Date of Acceptance05-May-2014
Date of Web Publication15-Sep-2014

Correspondence Address:
Yifeng Du
Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan 250021, Shandong Province
Login to access the Email id

Source of Support: This work was supported by the Natural Science Foundation of Taishan Medical University in China, No. 2007.ZR-087., Conflict of Interest: None

DOI: 10.4103/1673-5374.139461

Rights and Permissions

Ganoderma lucidum is a traditional Chinese medicine, which has been shown to have both anti-oxidative and anti-inflammatory effects, and noticeably decreases both the infarct area and neuronal apoptosis of the ischemic cortex. This study aimed to investigate the protective effects and mechanisms of pretreatment with ganoderma lucidum (by intragastric administration) in cerebral ischemia/reperfusion injury in rats. Our results showed that pretreatment with ganoderma lucidum for 3 and 7 days reduced neuronal loss in the hippocampus, diminished the content of malondialdehyde in the hippocampus and serum, decreased the levels of tumor necrosis factor-α and interleukin-8 in the hippocampus, and increased the activity of superoxide dismutase in the hippocampus and serum. These results suggest that pretreatment with ganoderma lucidum was protective against cerebral ischemia/reperfusion injury through its anti-oxidative and anti-inflammatory actions.

Keywords: nerve regeneration; cerebral ischemia/reperfusion; ganoderma lucidum; anti-oxidative; anti-inflammatory; superoxide dismutase; malondialdehyde; interleukin-8; tumor necrosis factor-α; apoptosis; hippocampus; neural regeneration

How to cite this article:
Zhang W, Zhang Q, Deng W, Li Y, Xing G, Shi X, Du Y. Neuroprotective effect of pretreatment with ganoderma lucidum in cerebral ischemia/reperfusion injury in rat hippocampus. Neural Regen Res 2014;9:1446-52

How to cite this URL:
Zhang W, Zhang Q, Deng W, Li Y, Xing G, Shi X, Du Y. Neuroprotective effect of pretreatment with ganoderma lucidum in cerebral ischemia/reperfusion injury in rat hippocampus. Neural Regen Res [serial online] 2014 [cited 2021 Jul 24];9:1446-52. Available from: http://www.nrronline.org/text.asp?2014/9/15/1446/139461

Author contributions: Zhang WX, Zhang QL and Du YF conceived and designed the experiments. Zhang WX, Deng W, Li YL, Xing GQ and Shi XJ performed the experiments. Zhang WX and Zhang QL provided reagents/materials/analysis tools. Zhang WX, Zhang QL and Du YF wrote the manuscript. All authors approved the final version of the paper.

  Introduction Top

Cerebral ischemic disease is among the leading causes of senile dementia and death worldwide (Brouns and De Deyn, 2009). During ischemia, reduced glucose and oxygen transport to the brain causes cellular bioenergetic failure, which may lead to oxidative stress, inflammation, blood-brain barrier dysfunction, and eventually neuronal cell death, particularly in the hippocampus (Atlas et al., 2013). Evidence suggests that post-ischemic oxidative stress and inflammation are major events in the pathophysiology of ischemic damage (Chan, 1996; Lakhan et al., 2009). Excessive generation of free radicals and reactive oxygen species in the human brain results in lipid peroxidation of the cell membrane, protein denaturation, DNA damage, and oxidative injury to tissues (Ikeda and Long, 1990). The production of proinflammatory cytokines, such as tumor necrosis factor-α, interleukin-8 and interleukin-6, participates in tissue remodeling after injury and contributes to inflammation of the central nervous system (Wang et al., 2007, 2014; Terao et al., 2008; He et al., 2013).

Ganoderma lucidum is a white rot fungus used as a traditional remedy in the treatment of human diseases, such as hepatitis, liver disorders, hypercholesterolemia, arthritis, bronchitis, and tumorigenic diseases (Yuan et al., 2007; Zhou et al., 2012; Pan et al., 2014). The major active ingredients of ganoderma lucidum are polysaccharides, ergosterol, unsaturated fatty acids, and triterpenoids (Zhou et al., 2012; Pan et al., 2013a, 2014). Previous studies have shown that ganoderma lucidum-polysaccharides are anti-oxidative, hypoglycemic, anti-inflammatory, and have anti-tumor and immunomodulatory activities (Lin and Zhang, 2004; Li et al., 2011; Zhao et al., 2012). Oral administration of ganoderma lucidum has been shown to significantly reduce both cerebral infarct area and neuronal apoptosis in the ischemic cortex (Zhao et al., 2012). Recent pharmacological studies suggest that ganoderma lucidum stimulates the production of cytokines and exerts immunomodulatory effects (Ma et al., 2008). Administration of ganoderma lucidum to db/db mice also increases both serum and liver activity of antioxidant enzymes, such as superoxide dismutase, catalase, and glutathione peroxidase (Pan et al., 2013a). Therefore, we hypothesized that ganoderma lucidum protects hippocampal neurons against cerebral ischemia/reperfusion injury because of both its antioxidant and anti-inflammatory activities. To test this hypothesis, we investigated the effect of the pretreatment with ganoderma lucidum on cerebral ischemia/reperfusion injury.

  Materials and Methods Top


Thirty-two healthy, aged, and specific-pathogen-free Wistar rats (male and female), 220 ± 10 g, were purchased from the Jining Lukang Co., Ltd. (Jining, Shandong Province, China) (license No. SCXK (Lu) 2008-0015) and housed in cages (4 rats per cage). All rats were allowed free access to food and water, and were maintained in the animal facility with filtered air under a 12-hour light/dark cycle at 23 ± 2°C and at a humidity of 45-55%. All procedures were approved by the Ethics Committee on Animal Experiments of Taishan Medical University and carried out in agreement with the Chinese Community guidelines for the Care and Use of Laboratory Animals. Rats were equally and randomly divided into four groups as follows: sham surgery, model, 3 or 7 days of pretreatment.

Preparation and administration of ganoderma lucidum

The ganoderma lucidum fungus mixture (water-soluble) was provided by Shandong Si Wei Co., Ltd. (Heze, Shandong Province, China) (license No. Z200220083). The preparation of ganoderma lucidum fungus mixture involved the inoculation of a pure culture of ganoderma lucidum mycelia into a solid culture medium (composed of bagasse and defatted rice bran) and cultured until just before the formation of the fruit body (for 3-4 months). The air-dried ganoderma lucidum fruit bodies were extracted with hot water and sterilized by filtration, as described previously (Gao et al., 2002; Kubo et al., 2005; Zhou et al., 2010). Ganoderma lucidum was administrated to rats at 20 mL/kg per day via gastric gavage (the polysaccharides is 2 mg/mL) (Hu et al., 2003). Rats of the 3- and 7-day pretreatment groups were administrated for their respective treatment exposure before the modeling. Rats in both the model and sham groups were administrated water at 20 mL/kg for 7 days.

Focal cerebral ischemia/reperfusion rat model

Animals in both the model and pretreatment groups were deprived of food for 12 hours before the surgical procedure. The transient focal cerebral ischemia model was induced by middle cerebral artery occlusion, as described previously (Longa et al., 1989). Briefly, rats were anesthetized intraperitoneally with chloral hydrate at 400 mg/kg. The right common carotid artery was exposed, carefully isolated from the vagus nerve, and ligated on the proximal side through a right paramedian incision. The external carotid artery, the occipital artery, and the pterygopalatine artery were ligated similarly. Ischemia was induced by advancing a nylon monofilament (0.26 mm) with its tip rounded into the interior carotid artery via the external carotid artery. After placement, the intraluminal suture was secured with a 4-0 silk suture tied around the external carotid artery. Reperfusion was produced when the intraluminal suture was withdrawn 1.5 hours after middle cerebral artery occlusion. Physiological parameters were monitored at baseline, during middle cerebral artery occlusion, and at reperfusion. Rectal temperature was maintained at 37°C with a heating lamp. Animals in the sham group were subjected to all the surgical procedures for ischemia/reperfusion except the occlusion.

The step-down test

The step-down test is widely used to measure passive avoidance for learning and memory (Longa et al., 1989). The procedure consisted of a training session and a test session 24 hours after training. Memory was measured 24 hours after ischemia. The apparatus (YLS-IA recorder for Multi-function autonomic activities in mice, Shandong academy of medical science, Jinan, Shandong Province, China) was a 40 cm × 40 cm plastic box with a 4.0 cm high and 10.0 cm wide platform in the left corner of the training box apparatus. The base of the apparatus was made of 0.1 cm caliber stainless steel bars spaced (in parallel) 1.0 cm apart. In the training session, animals were gently placed on the platform to habituate for 3 minutes. If the animals stepped down from the platform, they would receive a continuous scrambled foot shock (0.4 mA, 2 seconds), which made them immediately step up to the platform (i.e., passive avoidance). The training procedure was carried out 30 minutes daily for 3 consecutive days. In test sessions, foot shock was not delivered after the animal step-down from the platform. The step-down latency and number of errors made in 10 minutes were recorded.

Nissl staining for the histopathological assessment of the hippocampus

Brain sections from sacrificed animals were exposed to the Nissl stain for the assessment of neuronal cell loss at the dorsal CA1 subfield of the hippocampus, as previously described (Atlas et al., 2013). Animals were deeply anesthetized with pentobarbital (50 mg/kg, intraperitoneally) and then transcardially perfused with cold saline followed by 4% paraformaldehyde in PBS (0.1 mol/L; pH 7.4). After post-fixation in situ overnight, brains were removed, washed in PBS, cryoprotected with 30% sucrose in PBS, and frozen in powdered dry ice. Coronal sections (20 μm) were cut at the level of the dorsal hippocampus (3.3-4.0 mm posterior from the bregma) (Paxinos and Watson, 2005) with a cryostat. Every fourth section was collected and stained with cresyl violet. For Nissl staining, the sections were mounted on slides (Superfrost-plus, Fisher Scientific, Pittsburgh, PA, USA), dehydrated and rehydrated in graded ethanols and xylenes, respectively and then incubated in 1% cresyl violet for 30 seconds. Sections were then decolorized in acetic acid, dehydrated, and coverslipped with Permount. Sections were observed with a binocular microscope (Olympus, Tokyo, Japan).

Detection of oxidative stress in the hippocampus and serum

The level of malondialdehyde is used to measure the amount of lipid peroxidation, and this compound was determined spectrophotometrically, as previously described (Ohkawa et al., 1979). Briefly, 10 mg hippocampal tissues were homogenized with 0.1 mL sodium phosphate buffer (0.2 mol/L, pH 7.4). Acetic acid (1.5 mL, 20%, pH 3.5), thiobarbituric acid (1.5 mL, 0.8%), and sodium dodecyl sulfate (0.2 mL, 8.1%) were added to 0.1 mL of processed tissue sample and serum. The mixture was then heated at 100°C for 60 minutes, cooled with tap water and 5 mL of n-butanol plus pyridine (15:1, v/v) in 1 mL of distilled water, and then shaken vigorously. After centrifugation at 1,500 × g for 10 minutes, the organic layer was removed and its absorbance was measured at 532 nm using a spectrophotometer (Third Instrument Factory, Shanghai, China). Superoxide dismutase activity in hippocampal homogenates and serum was measured by the inhibition of nitroblue tetrazolium (Assay kit from Beyotime Institute of Biotechnology, China) reduction caused by the xanthine-XO system as the superoxide generator (Zhou and Prognon, 2006). Briefly, superoxide dismutase activity was assessed during the ethanol phase of the lysate after 1.0 mL ethanol/chloroform mixture (5/3, v/v) was added to the same volume of sample and then centrifuged. One unit of superoxide dismutase was defined as the amount of enzyme that caused 50% inhibition of the nitroblue tetrazolium reduction rate. A calibration curve was derived with purified superoxide dismutase as the standard to calculate the activity of superoxide dismutase present in the samples.

Immunohistochemistry for tumor necrosis factor-α and interleukin-8 in the CA1 region of the hippocampus

Animals were transcardially perfused with a saline solution containing heparin (10 U/mL) followed by 4% paraformaldehyde dissolved in 0.1 mol/L phosphate buffer. The hippocampus was removed from the cranium, paraffin-embedded, and sectioned at a thickness of 4 μm for histology. Immunohistochemistry was performed using the Histostainplus kit (Beijing Zhongshan Biotechnology, Beijing, China). Briefly, brain sections were incubated in a peroxidase quenching solution (3% hydrogen peroxide in absolute methanol), rinsed twice with PBS and then incubated with serum blocking solution for 20 minutes. Sections were then incubated with the monoclonal antibodies, mouse anti-rat tumor necrosis factor-α (1:100; Boster, Wuhan, Hubei Province, China) or interleukin-8 (1:100; Boster), overnight at 4°C. After primary antibody incubation, the samples were rinsed with 0.3% skim milk in PBS containing 0.05% Triton X-100, then incubated with biotinylated goat anti-mouse IgG diluted in PBS containing 0.3% skim milk, followed by the enzyme conjugate diluted in PBS containing 0.3% skim milk. The bound antiserum was visualized by incubating the slides with 3,3′-diaminobenzidine. Finally, the sections were dehydrated and covered by a coverslip, and were then viewed, photographed, and analyzed by Image analysis software Image-proplus (Media Cybernetics, Bethesda, MD, USA). Photomicrographs were taken, and the absorbance was calculated. Omission of the primary or secondary antibody served as the negative control (Griffiths et al., 1991).

Statistical analysis

All data were expressed as mean ± SD and were analyzed by one-way analysis of variance followed by Dunnett's post hoc test. All analyses were performed with SPSS 17.0 (SPSS Chicago, IL, USA). Significance was reached at values of P < 0.05.

  Results Top

Pretreatment with ganoderma lucidum improved learning and memory in rats with cerebral ischemia/reperfusion injury

Results in the step-down test showed that compared with the sham surgery group, the mean latency was significantly lower and the number of errors was significantly higher in rats of the model group (P < 0.05; [Figure 1]. However, the 3- and 7-day pretreatment with ganoderma lucidum significantly prolonged the mean latency and decreased the number of errors in the step-down test compared with the model group (P < 0.05; [Figure 1]. Furthermore, both pretreatments did not affect rat behavior [Figure 1].
Figure 1: Pretreatment with ganoderma lucidum improves learning and memory after cerebral ischemia/reperfusion injury.
(A) The number of errors of the step-down test. (B) Mean latency of the step-down test. All data were expressed as mean ± SD (n = 8 rats per group) and were analyzed by one-way analysis of variance followed by Dunnett's post hoc test. *P < 0.05, vs. sham surgery group (sham); #P < 0.05, vs. model group.

Click here to view

Pretreatment with ganoderma lucidum reduced ischemia-induced neuronal loss in the hippocampus

Nissl staining showed that in the sham surgery group, CA1 pyramidal neurons exhibited a typical shape and regular surface structure, and were clearly visible and orderly arranged [Figure 2]. In the model rats, pyramidal neurons were disarranged and exhibited shrinkage, a dark staining appearance with small cytoplasm, or neuronal loss [Figure 2]. Cell junctions became loose and the intercellular spaces were widened. Pretreatment with ganoderma lucidum, particularly for 7 days, greatly reduced ischemia-induced neuronal loss in the hippocampus [Figure 2].
Figure 2: Pretreatment with ganoderma lucidum greatly reduces ischemia-induced neuronal loss in the hippocampus (× 400).
Nissl staining of (A) sham surgery group, (B) model group, and (C) 3-day or (D) 7-day pretreatment with ganoderma lucidum. Arrows indicate neurons.

Click here to view

Pretreatment with ganoderma lucidum decreased malondialdehyde contents and increased superoxide dismutase levels in the hippocampus and serum in rats with cerebral ischemia/reperfusion injury

Compared with the sham surgery group, malondialdehyde and superoxide dismutase levels were significantly increased and decreased, respectively in the hippocampus and serum of the model group (P < 0.05; [Figure 3]. Pretreatment with ganoderma lucidum for 3 or 7 days significantly decreased and increased the levels of malondialdehyde and superoxide dismutase, respectively in the hippocampus and serum compared with the model group (P < 0.05; [Figure 3]. The malondialdehyde content and superoxide dismutase level in the hippocampus tissue and serum in rats with cerebral ischemia/reperfusion injury was similar at each pretreatment timepoint [Figure 3].
Figure 3: Pretreatment with ganoderma lucidum decreases malondialdehyde (MDA) content and increases superoxide dismutase (SOD) level in the hippocampus and serum of rats with cerebral ischemia/reperfusion injury.
(A, C) Levels of MDA and SOD in the hippocampus. (B, D) Levels of MDA and SOD in the serum. All data were expressed as mean ± SD (n = 8 rats per group) and were analyzed by one-way analysis of variance followed by Dunnett's post hoc test. *P < 0.05, vs. sham surgery group (sham); #P < 0.05, vs. model group.

Click here to view

Pretreatment with ganoderma lucidum suppressed the expression of tumor necrosis factor-α and interleukin-8 in the hippocampus of rats with cerebral ischemia/reperfusion injury

Immunohistochemistry revealed that tumor necrosis factor-α and interleukin-8 were expressed at very low levels in the sham surgery group [Figure 4]. The immunoreactivity of these two cytokines was significantly higher in the hippocampal CA1 region of the model group compared with the sham surgery group (P < 0.05; [Figure 4]. Pretreatment with ganoderma lucidum significantly reduced the immunoreactivity of both cytokines in the hippocampus (P < 0.05; [Figure 4]. The immunoreactivity of both cytokines in the hippocampus of rats with cerebral ischemia/reperfusion injury was similar at each pretreatment time point [Figure 4].
Figure 4: The effect of G. lucidum pretreatment on tumor necrosis factor-alpha (TNF-á) and interleukin-8 (IL-8) immunoreactivity in the CA1 of the rat hippocampus.
(A) TNF-α and IL-8 immunoreactivity in the CA1 of the rat hippocampus (immunohistochemical staining, × 400). Arrows point to the positive expression. (B) The quantitative expression of TNF-α and IL-8 in the CA1 of the rat hippocampus. Data are expressed as mean ± SD, n = 8 rats in each group. Statistical evaluation of the data was performed using one-way analysis of variance followed by Dunnett's post hot test for comparisons among more than two groups. *P < 0.05, vs. sham surgery group; #P < 0.05, vs. model group.

Click here to view

  Discussion Top

Despite numerous therapeutic trials, stroke is still the leading cause of death in the world. The present treatment for stroke is to perfuse with recombinant tissue plasminogen activator (Lakhan et al., 2009). However, a narrow therapeutic time window and risk of hemorrhage has hindered the success of this treatment (Hickenbottom and Barsan, 2000). Therefore, a useful and safe-to-use protective agent is particularly important in treating and alleviating the unfavorable outcomes of stroke. The present study demonstrated that pretreatment with ganoderma lucidum was protective against cerebral ischemia/reperfusion injury through its anti-oxidative and anti-inflammatory actions.

To determine the aspects of neurobehavioral protection, the animals were subjected to the step-down test, which is widely used for evaluating passive avoidance memory in rats. In this study, pretreatment with ganoderma lucidum for 3 and 7 days increased the latency time and decreased the error number compared with the control group. Therefore, these results suggested that ganoderma lucidum could improve memory retention. Ganoderma lucidum has been shown to improve learning and memory in senescence-accelerated mice prone 8, and thus neuroactive components that may exist in ganoderma lucidum extracts may cross the blood-brain barrier to promote neuronal function (Wang et al., 2004; Zhou et al., 2012). The hippocampus plays a critical role in several fundamental memory operations (Eichenbaum, 2001). Oral administration of ganoderma lucidum-polysaccharides significantly reduces the cerebral infarct area, neurological functional deficits, and neuronal apoptosis in ischemic cortex (Zhou et al., 2010). To confirm the protective potential of ganoderma lucidum, neuronal injury was analyzed by Nissl staining. The present study showed that in addition to marked improvements in memory, rats pretreated with ganoderma lucidum also exhibited less neural death in the hippocampal CA1 region compared with model rats. This result further confirmed the protective effect of this compound against ischemia.

The brain is particularly vulnerable to oxidative stress injury because of its high consumption of oxygen, abundant polyunsaturated fatty acids, and low levels of endogenous antioxidants (Madamanchi et al., 2005; Schreibelt et al., 2007). Free radicals may attack protein and polyunsaturated phospholipids in membranes, including plasma membranes and cellular organelles, leading to the disruption of these organelles. Therefore, inducing anti-oxidative effects is considered to be a promising treatment for ischemic stroke (Hall and Murdoch, 1990; Powers and Jackson, 2008). Superoxide dismutase is the primary protective enzyme against tissue damage caused by reactive oxygen species. This enzyme catalyzes the dismutation of superoxide anion to hydrogen peroxide and prevents the formation of the hydroxyl radical (Huang et al., 2012). Superoxide dismutase activity in serum has been shown to be reduced in stroke patients, and increased antioxidant activity may be beneficial in the acute treatment of cerebral ischemia (Spranger et al., 1997). Our study showed that the reduction in superoxide dismutase activity after cerebral ischemia/reperfusion injury was prevented by administration of ganoderma lucidum. Brain malondialdehyde is one of the most sensitive indicators of lipid peroxidation (Cini et al., 1994). In the present study, malondialdehyde was significantly elevated in the model group, suggesting the involvement of lipid oxidation in cerebral injury. However, ganoderma lucidum significantly reduced the level of malondialdehyde. Overall, these results indicate an antioxidant effect of ganoderma lucidum. Therefore, this compound may induce a protective mechanism by increasing the endogenous defensive capacity of the brain to combat oxidative stress induced by ischemia/reperfusion.

Inflammation is an important pathological process in ischemia, particularly during the acute phase (Candelario-Jalil, 2009; Lakhan et al., 2009). Focal cerebral ischemia elicits a strong inflammatory response involving tumor necrosis factor-α, which induces the synthesis of subsequent proinflammatory cytokines, such as interleukin-6 and interleukin-8 (Cie?lak et al., 2013; Zhang et al., 2013). These proinflammatory molecules induce multiple inflammatory cascades and contribute to the progression of brain damage following ischemic insult. Ganoderma lucidum has been shown to suppress lipopolysaccharide-mediated expression of tumor necrosis factor-α in murine RAW 264.7 cells (Dudhgaonkar et al., 2009). Ganoderma lucidum-polysaccharides significantly reduces the levels of both serum interleukin-6 and tumor necrosis factor-α and increases the levels of serum interleukin-2, interleukin-4, and interleukin-10 in rats (Pan et al., 2013b). Other studies found that ganoderma lucidum suppresses oxidative stress-induced secretion of interleukin-8 from breast cancer cells. In the present study, immunoreactivity of tumor necrosis factor-α and interleukin-8 was significantly reduced in the hippocampal CA1 region by the pretreatment of ganoderma lucidum compared with the model group. These results suggest that ganoderma lucidum protects neuronal cells from inflammation-induced injury after ischemia.

In conclusion, results of the present study indicate that ganoderma lucidum produces a distinct protective effect against cerebral ischemia/reperfusion injury in rats. This protective effect may be due to both its anti-oxidative and anti-inflammatory properties. Overall, ganoderma lucidum may be a potentially safe traditional Chinese medicine treatment for stroke patients.[42]

  References Top

1.Atlas iMA, Naderian H, Noureddini M, Fakharian E, Azami A (2013) Morphology of rat hippocampal ca1 neurons following modified two and four-vessels global ischemia models. Arch Trauma Res 2:124-128.  Back to cited text no. 1
2.Brouns R, De Deyn PP (2009) The complexity of neurobiological processes in acute ischemic stroke. Clin Neurol Neurosurg 111:483-495.  Back to cited text no. 2
3.Candelario-Jalil E (2009) Injury and repair mechanisms in ischemic stroke: considerations for the development of novel neurotherapeutics. Curr Opin Investig Drugs 10:644-654.  Back to cited text no. 3
4.Chan PH (1996) Role of oxidants in ischemic brain damage. Stroke 27:1124-1129.  Back to cited text no. 4
5.Cie?lak M, Wojtczak A, Cie?lak M (2013) Relationship between the induction of inflammatory processes and infectious diseases in patients with ischemic stroke. Acta Biochim Pol 60:345-359.  Back to cited text no. 5
6.Cini M, Fariello RG, Bianchetti A, Moretti A (1994) Studies on lipid peroxidation in the rat brain. Neurochem Res 19:283-288.  Back to cited text no. 6
7.Dudhgaonkar S, Thyagarajan A, Sliva D (2009) Suppression of the inflammatory response by triterpenes isolated from the mushroom Ganoderma lucidum. Int Immunopharmacol 9:1272-1280.  Back to cited text no. 7
8.Eichenbaum H (2001) The hippocampus and declarative memory: cognitive mechanisms and neural codes. Behav Brain Res 127:199-207.  Back to cited text no. 8
9.Gao Y, Zhou S, Wen J, Huang M, Xu A (2002) Mechanism of the antiulcerogenic effect of Ganoderma lucidum polysaccharides on indomethacin-induced lesions in the rat. Life Sci 72:731-745.  Back to cited text no. 9
10.Griffiths CE, Barker JN, Kunkel S, Nickoloff BJ (1991) Modulation of leucocyte adhesion molecules, a T-cell chemotaxin (IL-8) and a regulatory cytokine (TNF-alpha) in allergic contact dermatitis (rhus dermatitis). Br J Dermatol 124:519-526.  Back to cited text no. 10
11.Hall R, Murdoch J (1990) Brain protection: physiological and pharmacological considerations. Part II: the pharmacology of brain protection. Can J Anaesth 37:762-777.  Back to cited text no. 11
12.He W, Chen W, Zhou Y, Tian Y, Liao F (2013) Xanthotoxol exerts neuroprotective effects via suppression of the inflammatory response in a rat model of focal cerebral ischemia. Cell Mol Neurobiol 33:715-722.  Back to cited text no. 12
13.Hickenbottom SL, Barsan WG (2000) Acute ischemic stroke therapy. Neurol Clin 18:379-397.  Back to cited text no. 13
14.Hu ZL, Wen SG, Yu RJ, Zhu Y (2003) Effects of Ganoderma lucidum fungus mixtureon immune enhancement in mice. Shandong Zhongyiyao Daxue Xuebao 27:683-687.  Back to cited text no. 14
15.Huang TT, Zou Y, Corniola R (2012) Oxidative stress and adult neurogenesis--effects of radiation and superoxide dismutase deficiency. Semin Cell Dev Biol 23:738-744.  Back to cited text no. 15
16.Ikeda Y, Long DM (1990) The molecular basis of brain injury and brain edema: the role of oxygen free radicals. Neurosurgery 27:1-11.  Back to cited text no. 16
17.Kubo N, Myojin Y, Shimamoto F, Kashimoto N, Kyo E, Kamiya K, Watanabe H (2005) Protective effects of a water-soluble extract from cultured medium of Ganoderma lucidum (Rei-shi) mycelia and Agaricus blazei murill against X-irradiation in B6C3F1 mice: increased small intestinal crypt survival and prolongation of average time to animal death. Int J Mol Med 15:401-406.  Back to cited text no. 17
18.Lakhan SE, Kirchgessner A, Hofer M (2009) Inflammatory mechanisms in ischemic stroke: therapeutic approaches. J Transl Med 7:97.  Back to cited text no. 18
19.Li F, Zhang Y, Zhong Z (2011) Antihyperglycemic effect of ganoderma lucidum polysaccharides on streptozotocin-induced diabetic mice. Int J Mol Sci 12:6135-6145.  Back to cited text no. 19
20.Lin ZB, Zhang HN (2004) Anti-tumor and immunoregulatory activities of Ganoderma lucidum and its possible mechanisms. Acta Pharmacol Sin 25:1387-1395.  Back to cited text no. 20
21.Longa EZ, Weinstein PR, Carlson S, Cummins R (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20:84-91.  Back to cited text no. 21
22.Ma C, Guan SH, Yang M, Liu X, Guo DA (2008) Differential protein expression in mouse splenic mononuclear cells treated with polysaccharides from spores of Ganoderma lucidum. Phytomedicine 15:268-276.  Back to cited text no. 22
23.Madamanchi NR, Vendrov A, Runge MS (2005) Oxidative stress and vascular disease. Arterioscler Thromb Vasc Biol 25:29-38.  Back to cited text no. 23
24.Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351-358.  Back to cited text no. 24
25.Pan D, Zhang D, Wu J, Chen C, Xu Z, Yang H, Zhou P (2013a) Antidiabetic, antihyperlipidemic and antioxidant activities of a novel proteoglycan from ganoderma lucidum fruiting bodies on db/db mice and the possible mechanism. PLoS One 8:e68332.  Back to cited text no. 25
26.Pan D, Zhang D, Wu J, Chen C, Xu Z, Yang H, Zhou P (2014) A novel proteoglycan from Ganoderma lucidum fruiting bodies protects kidney function and ameliorates diabetic nephropathy via its antioxidant activity in C57BL/6 db/db mice. Food Chem Toxicol 63:111-118.  Back to cited text no. 26
27.Pan K, Jiang Q, Liu G, Miao X, Zhong D (2013b) Optimization extraction of Ganoderma lucidum polysaccharides and its immunity and antioxidant activities. Int J Biol Macromol 55:301-306.  Back to cited text no. 27
28.Paxinos G, Watson C (2005) The Rat Brain in Stereotaxic Coordinates. London: Academic Press.  Back to cited text no. 28
29.Powers SK, Jackson MJ (2008) Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev 88:1243-1276.  Back to cited text no. 29
30.Reynolds A, Laurie C, Lee Mosley R, Gendelman HE (2007) Oxidative Stress and the Pathogenesis of Neurodegenerative Disorders. Int Rev Neurobiol 82:297-325.  Back to cited text no. 30
31.Schreibelt G, van Horssen J, van Rossum S, Dijkstra CD, Drukarch B, de Vries HE (2007) Therapeutic potential and biological role of endogenous antioxidant enzymes in multiple sclerosis pathology. Brain Res Rev 56:322-330.  Back to cited text no. 31
32.Spranger M, Krempien S, Schwab S, Donneberg S, Hacke W (1997) Superoxide dismutase activity in serum of patients with acute cerebral ischemic injury. Correlation with clinical course and infarct size. Stroke 28:2425-2428.  Back to cited text no. 32
33.Terao S, Yilmaz G, Stokes KY, Ishikawa M, Kawase T, Granger DN (2008) Inflammatory and injury responses to ischemic stroke in obese mice. Stroke 39:943-950.  Back to cited text no. 33
34.Wang J, Wang P, Li S, Wang S, Li Y, Liang N, Wang M (2014) Mdivi-1 prevents apoptosis induced by ischemia-reperfusion injury in primary hippocampal cells via inhibition of reactive oxygen species-activated mitochondrial pathway. J Stroke Cerebrovasc Dis 23:1491-1499.  Back to cited text no. 34
35.Wang MF, Chan YC, Wu CL, Wong YC, Hosoda K, Yamamoto S (2004) Effects of Ganoderma on aging and learning and memory ability in senescence accelerated mice. Int Congr Ser 1260:399-404.  Back to cited text no. 35
36.Wang Q, Tang XN, Yenari MA (2007) The inflammatory response in stroke. J Neuroimmunol 184:53-68.  Back to cited text no. 36
37.Yuan JP, Wang JH, Liu X (2007) Distribution of free and esterified ergosterols in the medicinal fungus Ganoderma lucidum. Appl Microbiol Biotechnol 77:159-165.  Back to cited text no. 37
38.Zhang Y, Li YW, Wang YX, Zhang HT, Zhang XM, Liang Y, Zhang XS, Wang WS, Liu HG, Zhang Y, Zhang L, Zheng YH (2013) Remifentanil preconditioning alleviating brain damage of cerebral ischemia reperfusion rats by regulating the JNK signal pathway and TNF-á/TNFR1 signal pathway. Mol Biol Rep 40:6997-7006.  Back to cited text no. 38
39.Zhao W, Jiang X, Deng W, Lai Y, Wu M, Zhang Z (2012) Antioxidant activities of Ganoderma lucidum polysaccharides and their role on DNA damage in mice induced by cobalt-60 gamma-irradiation. Food Chem Toxicol 50:303-309.  Back to cited text no. 39
40.Zhou JY, Prognon P (2006) Raw material enzymatic activity determination: a specific case for validation and comparison of analytical methods--the example of superoxide dismutase (SOD). J Pharm Biomed Anal 40:1143-1148.  Back to cited text no. 40
41.Zhou Y, Qu ZQ, Zeng YS, Lin YK, Li Y, Chung P, Wong R, Hägg U (2012) Neuroprotective effect of preadministration with Ganoderma lucidum spore on rat hippocampus. Exp Toxicol Pathol 64:673-680.  Back to cited text no. 41
42.Zhou ZY, Tang YP, Xiang J, Wua P, Jin HM, Wang Z, Mori M, Cai DF (2010) Neuroprotective effects of water-soluble Ganoderma lucidum polysaccharides on cerebral ischemic injury in rats. J Ethnopharmacol 131:154-164.  Back to cited text no. 42


  [Figure 1], [Figure 2], [Figure 3], [Figure 4]

This article has been cited by
1 Anti-cerebral ischemia reperfusion injury of polysaccharides: A review of the mechanisms
Qianghua Yuan,Yan Yuan,Yan Zheng,Rong Sheng,Li Liu,Fan Xie,Jing Tan
Biomedicine & Pharmacotherapy. 2021; 137: 111303
[Pubmed] | [DOI]
2 Effects of Ganoderma lucidum Polysaccharides on Different Pathways Involved in the Development of Spinal Cord Ischemia Reperfusion Injury: Biochemical, Histopathologic, and Ultrastructural Analysis in a Rat Model
Ramazan Kahveci,Fatih Ozan Kahveci,Emre Cemal Gokce,Aysun Gokce,‹Áler Kisa,Mustafa Fevzi Sargon,Ramazan Fesli,Bora GŁrer
World Neurosurgery. 2021;
[Pubmed] | [DOI]
3 Water Extract of Mixed Mushroom Mycelia Grown on a Solid Barley Medium Is Protective against Experimental Focal Cerebral Ischemia
Ji Heun Jeong,Shin Hye Kim,Mi Na Park,Jong Yea Park,Hyun Young Park,Chan Eui Song,Ji Hyun Moon,Ah La Choi,Ki Duck Kim,Nam Seob Lee,Young Gil Jeong,Do Kyung Kim,Bong Ho Lee,Yung Choon Yoo,Seung Yun Han
Current Issues in Molecular Biology. 2021; 43(1): 365
[Pubmed] | [DOI]
4 Modulation of neuroinflammatory pathways by medicinal mushrooms, with particular relevance to Alzheimerśs disease
Naufal Kushairi,Nor Athirah Kamaliah Ahmad Tarmizi,Chia Wei Phan,Ian Macreadie,Vikineswary Sabaratnam,Murali Naidu,Pamela David
Trends in Food Science & Technology. 2020;
[Pubmed] | [DOI]
5 Antioxidants as an Epidermal Stem Cell Activator
Soon-Hyo Kwon,Kyoung-Chan Park
Antioxidants. 2020; 9(10): 958
[Pubmed] | [DOI]
6 Anti-inflammatory Effects of Traditional Chinese Medicines on Preclinical in vivo Models of Brain Ischemia-Reperfusion-Injury: Prospects for Neuroprotective Drug Discovery and Therapy
Tangming Peng,Yizhou Jiang,Mohd Farhan,Philip Lazarovici,Ligang Chen,Wenhua Zheng
Frontiers in Pharmacology. 2019; 10
[Pubmed] | [DOI]
7 Pharmacological effects of natural Ganoderma and its extracts on neurological diseases: A comprehensive review
Chen Zhao,Chunchen Zhang,Zheng Xing,Zeeshan Ahmad,Jing-Song Li,Ming-Wei Chang
International Journal of Biological Macromolecules. 2018;
[Pubmed] | [DOI]
8 Ganoderma lucidum Polysaccharide Peptide Attenuates Skin Flap Ischemia-Reperfusion Injury in a Thioredoxin-Dependent Manner
Huiwen Ren,Xiangbo Meng,Jian Yin,Jingyan Sun,Qingfeng Huang,Zhuming Yin
Plastic and Reconstructive Surgery. 2018; 142(1): 23e
[Pubmed] | [DOI]
9 Ganoderma lucidum extract ameliorates MPTP-induced parkinsonism and protects dopaminergic neurons from oxidative stress via regulating mitochondrial function, autophagy, and apoptosis
Zhi-li Ren,Chao-dong Wang,Tao Wang,Hui Ding,Ming Zhou,Nan Yang,Yan-yong Liu,Piu Chan
Acta Pharmacologica Sinica. 2018;
[Pubmed] | [DOI]
10 Triterpenes and Meroterpenes with Neuroprotective Effects from Ganoderma leucocontextum
Hongyu Chen,Jinjin Zhang,Jinwei Ren,Wenzhao Wang,Weiping Xiong,Yaodong Zhang,Li Bao,Hongwei Liu
Chemistry & Biodiversity. 2018; : e1700567
[Pubmed] | [DOI]
11 Triterpenoids from Ganoderma lucidum inhibit the activation of EBV antigens as telomerase inhibitors
Dong-Shu Zheng,Liang-Shu Chen
Experimental and Therapeutic Medicine. 2017; 14(4): 3273
[Pubmed] | [DOI]
12 Cost-Utility Analysis of a Six-Weeks Ganoderma Lucidum-Based Treatment for Women with Fibromyalgia: A Randomized Double-Blind, Active Placebo-Controlled Trial
Miguel A. Garcia-Gordillo,Daniel Collado-Mateo,Miguel A. HernŠndez-Mocholi,Francesco Pazzi,Narcis Gusi,Francisco J. Dominguez-MuŮoz,Jose C. Adsuar
MYOPAIN. 2017; : 1
[Pubmed] | [DOI]
13 Neuroprotective effects of plant polysaccharides: A review of the mechanisms
Qing-Han Gao,Xueyan Fu,Rui Zhang,Zhisheng Wang,Muzhen Guo
International Journal of Biological Macromolecules. 2017;
[Pubmed] | [DOI]
14 Protective effect of ginkgo proanthocyanidins against cerebral ischemia/reperfusion injury associated with its antioxidant effects
Wang-li Cao,Hai-bo Huang,Ling Fang,Jiang-ning Hu,Zhu-ming Jin,Ru-wei Wang
Neural Regeneration Research. 2016; 11(11): 1779
[Pubmed] | [DOI]
15 Chronic Treatment with a Water-Soluble Extract from the Culture Medium ofGanoderma lucidumMycelia Prevents Apoptosis and Necroptosis in Hypoxia/Ischemia-Induced Injury of Type 2 Diabetic Mouse Brain
Meiyan Xuan,Mari Okazaki,Naohiro Iwata,Satoshi Asano,Shinya Kamiuchi,Hirokazu Matsuzaki,Takeshi Sakamoto,Yoshiyuki Miyano,Hiroshi Iizuka,Yasuhide Hibino
Evidence-Based Complementary and Alternative Medicine. 2015; 2015: 1
[Pubmed] | [DOI]
16 Ganoderma lucidum polysaccharide peptide prevents renal ischemia reperfusion injury via counteracting oxidative stress
Dandan Zhong,Hongkai Wang,Ming Liu,Xuechen Li,Ming Huang,Hong Zhou,Shuqian Lin,Zhibin Lin,Baoxue Yang
Scientific Reports. 2015; 5: 16910
[Pubmed] | [DOI]
17 Anti-Amnesic Effect of Fermented Ganoderma lucidum Water Extracts by Lactic Acid Bacteria on Scopolamine-Induced Memory Impairment in Rats
Yu Jin Choi,Hee Sun Yang,Jun Hee Jo,Sang Cheon Lee,Tae Young Park,Bong Suk Choi,Kyoung Sun Seo,Chang Ki Huh
Preventive Nutrition and Food Science. 2015; 20(2): 126
[Pubmed] | [DOI]
18 Establishment of Lipofection Protocol for Efficient miR-21 Transfection into Cortical NeuronsIn Vitro
Zhaoli Han,Xintong Ge,Jin Tan,Fanglian Chen,Huabin Gao,Ping Lei,Jianning Zhang
DNA and Cell Biology. 2015; 34(12): 703
[Pubmed] | [DOI]
19 Genetic Engineering of Mesenchymal Stem Cells for Regenerative Medicine
Adam Nowakowski,Piotr Walczak,Miroslaw Janowski,Barbara Lukomska
Stem Cells and Development. 2015; 24(19): 2219
[Pubmed] | [DOI]


Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Access Statistics
Email Alert *
Add to My List *
* Registration required (free)

  In this article
Materials and Me...
Article Figures

 Article Access Statistics
    PDF Downloaded472    
    Comments [Add]    
    Cited by others 19    

Recommend this journal