• Users Online: 2262
  • Home
  • Print this page
  • Email this page
RESEARCH ARTICLE
Year : 2015  |  Volume : 10  |  Issue : 4  |  Page : 568-575

Resveratrol inhibits matrix metalloproteinases to attenuate neuronal damage in cerebral ischemia: a molecular docking study exploring possible neuroprotection


1 School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
2 School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India; Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
3 School of Biochemical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
4 School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi; Department of Biomedical Engineering, North Eastern Hill University (NEHU), Shillong, India

Correspondence Address:
Anand Kumar Pandey
School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi
India
Ranjana Patnaik
School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/1673-5374.155429

Rights and Permissions

The main pathophysiology of cerebral ischemia is the structural alteration in the neurovascular unit, coinciding with neurovascular matrix degradation. Resveratrol has been reported to be one of the most potent chemopreventive agents that can inhibit cellular processes associated with ischemic stroke. Matrix metalloproteinases (MMPs) has been considered as a potential drug target for the treatment of cerebral ischemia. To explore this, we tried to investigate the interaction of resveratrol with MMPs through molecular docking studies. At 30 minutes before and 2 hours after cerebral ischemia/reperfusion induced by occlusion of the middle cerebral artery, 40 mg/kg resveratrol was intraperitoneally administered. After resveratrol administration, neurological function and brain edema were significantly alleviated, cerebral infarct volume was significantly reduced, and nitrite and malondialdehyde levels in the cortical and striatal regions were significantly decreased. The molecular docking study of resveratrol and MMPs revealed that resveratrol occupied the active site of MMP-2 and MMP-9. The binding energy of the complexes was -37.848672 kJ/mol and -36.6345 kJ/mol for MMP-2 and MMP-9, respectively. In case of MMP-2, Leu 164, Ala 165 and Thr 227 were engaged in H-Bonding with resveratrol and in case of MMP-9, H-bonding was found with Glu 402, Ala 417 and Arg 424 residues. These findings collectively reveal that resveratrol exhibits neuroprotective effects on cerebral ischemia through inhibiting MMP-2 and MMP-9 activity.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed2073    
    Printed18    
    Emailed0    
    PDF Downloaded421    
    Comments [Add]    
    Cited by others 21    

Recommend this journal