• Users Online: 2567
  • Home
  • Print this page
  • Email this page
RESEARCH ARTICLE
Year : 2015  |  Volume : 10  |  Issue : 4  |  Page : 636-643

Propofol combined with bone marrow mesenchymal stem cell transplantation improves electrophysiological function in the hindlimb of rats with spinal cord injury better than monotherapy


1 First Department of Orthopedics, Tangshan Worker's Hospital Affiliated to Hebei Medical University, Tangshan, Hebei Province, China
2 Department of Neurology, Tangshan Union Medical College Hospital, Tangshan, Hebei Province, China
3 Operating Room, Tangshan Worker's Hospital Affiliated to Hebei Medical University, Tangshan, Hebei Province, China
4 Department of Neurosurgery, Tangshan Worker's Hospital Affiliated to Hebei Medical University, Tangshan, Hebei Province, China
5 Department of Anesthesiology, Xingtai People's Hospital Affiliated to Hebei Medical University, Xingtai, Hebei Province, China

Correspondence Address:
Zhi-yong Zhang
First Department of Orthopedics, Tangshan Worker's Hospital Affiliated to Hebei Medical University, Tangshan, Hebei Province
China
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/1673-5374.155440

Rights and Permissions

The repair effects of bone marrow mesenchymal stem cell transplantation on nervous system damage are not satisfactory. Propofol has been shown to protect against spinal cord injury. Therefore, this study sought to explore the therapeutic effects of their combination on spinal cord injury. Rat models of spinal cord injury were established using the weight drop method. Rats were subjected to bone marrow mesenchymal stem cell transplantation via tail vein injection and/or propofol injection via tail vein using an infusion pump. Four weeks after cell transplantation and/or propofol treatment, the cavity within the spinal cord was reduced. The numbers of PKH-26-positive cells and horseradish peroxidase-positive nerve fibers apparently increased in the spinal cord. Latencies of somatosensory evoked potentials and motor evoked potentials in the hindlimb were noticeably shortened, amplitude was increased and hindlimb motor function was obviously improved. Moreover, the combined effects were better than cell transplantation or propofol injection alone. The above data suggest that the combination of propofol injection and bone marrow mesenchymal stem cell transplantation can effectively improve hindlimb electrophysiological function, promote the recovery of motor funtion, and play a neuroprotective role in spinal cord injury in rats.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1818    
    Printed13    
    Emailed0    
    PDF Downloaded268    
    Comments [Add]    
    Cited by others 5    

Recommend this journal