• Users Online: 3627
  • Home
  • Print this page
  • Email this page

 Table of Contents  
INVITED REVIEW
Year : 2015  |  Volume : 10  |  Issue : 7  |  Page : 1018-1022

The treatment of Parkinson's disease with deep brain stimulation: current issues


Center for Movement Disorders and Neuromodulation, Department of Neurology, University Hospital Düsseldorf, Germany & Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany

Date of Acceptance08-May-2015
Date of Web Publication30-Jul-2015

Correspondence Address:
Lars Wojtecki
Center for Movement Disorders and Neuromodulation, Department of Neurology, University Hospital Düsseldorf, Germany & Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf
Germany
Login to access the Email id

Source of Support: This study was supported by ERA-NET Neuron /German Federal Ministry of Education and Research (BMBF): TYMON 01EW141 to LW., Conflict of Interest: None


DOI: 10.4103/1673-5374.160094

Rights and Permissions
  Abstract 

Deep brain stimulation has become a well-established symptomatic treatment for Parkinson's disease during the last 25 years. Besides improving motor symptoms and long-term motor complications, positive effects on patients' mobility, activities of daily living, emotional well-being and health-related quality of life have been recognized. Apart from that, numerous clinical trials analyzed effects on non-motor symptoms and side effects of deep brain stimulation. Several technical issues and stimulation paradigms have been and are still being developed to optimize the therapeutic effects, minimize the side effects and facilitate handling. This review summarizes current therapeutic issues, i.e., patient and target selection, surgical procedure and programming paradigms. In addition it focuses on neuropsychological effects and side effects of deep brain stimulation.

Keywords: Parkinson′s disease; deep brain stimulation; subthalamic nucleus


How to cite this article:
Moldovan AS, Groiss SJ, Elben S, Südmeyer M, Schnitzler A, Wojtecki L. The treatment of Parkinson's disease with deep brain stimulation: current issues. Neural Regen Res 2015;10:1018-22

How to cite this URL:
Moldovan AS, Groiss SJ, Elben S, Südmeyer M, Schnitzler A, Wojtecki L. The treatment of Parkinson's disease with deep brain stimulation: current issues. Neural Regen Res [serial online] 2015 [cited 2021 May 10];10:1018-22. Available from: http://www.nrronline.org/text.asp?2015/10/7/1018/160094


  Introduction Top


First performed in late 1980s, deep brain stimulation (DBS) of the subthalamic nucleus (STN) and the internal globuspallidus (GPi) or ventral intermedius nucleus (VIM) of the thalamus has developed and become a distinguished symptomatic treatment for Parkinson's disease (PD). Especially DBS of the STN and GPi is an effective option to improve motor symptoms and manage long-term motor complications resulting from levodopa treatment, such as wearing-off phenomena and dyskinesias. Furthermore patients' mobility, activities of daily living, emotional well-being and health-related quality of life which are impaired by motor symptoms and complications (Damiano et al., 2000; Chapuis et al., 2005; Chaudhuri et al., 2013), can be enhanced by DBS (Volkmann et al., 2001; Deuschl et al., 2006). To further optimize its efficacy technical issues and stimulation paradigms are still being developed. One aim of this review is to summarize current technical issues and stimulation paradigms. The other aim is to give an overview of the clinical effects and side effects of DBS with a focus on neuropsychological aspects.


  Clinical Outcome Top


Numerous clinical trials - few of them already providing long-term data between 8 and 10 years of follow-up (Fasano et al., 2010; Castrioto et al., 2011) - could demonstrate an improvement of levodopa-responsive motor symptoms and motor complications, a reduction of the levodopa equivalent dose and an increase in quality of life after DBS ([Table 1]). These trials provide a high level of evidence namely: Level I-II due to the prospective randomized nature of the trials (Oxford Centre for Evidence-based Medicine - Levels of Evidence; March 2009). However, placebo controlled trials assessing prospectively quality of life are not available for DBS in PD.
Table 1 Prospective randomized controlled clinical trials of deep brain stimulation (DBS) in Parkinson's disease (PD) a)


Click here to view



  Patient Selection Top


An essential aspect influencing the outcome after DBS in PD is patient selection and timing of surgery. Main indications for DBS in PD patients are levodopa-induced motor fluctuations, dyskinesias and unmanageable tremor. Preoperative indicators for a good outcome are younger age and shorter disease duration, high levodopa-response, few axial motor symptoms, absence of dementia, stable psychiatric conditions and no or non-severe comorbidities (Bronstein et al., 2011). With the exception of non-levodopa-responsive tremor, the preoperative levodopa-response is one of the most important outcome predictors (Charles et al., 2002). Several studies have shown a positive correlation between preoperative levodopa-response and motor improvement (Kleiner-Fisman et al., 2003; Kim et al., 2013).

Regarding cognitive impairment and psychiatric disorders, there are no stringent criteria available (Lang et al., 2006). Dementia is one of the most common exclusion criteria (Bronstein et al., 2011). The management of mild cognitive impairment is still handled more heterogenously. Besides age and levodopa-equivalence dosage the axial subscore, i.e., speech, neck rigidity, posture, rising from chair, gait and postural instability, in the Unified PD Rating Scale (UPDRS) is reported to be a predicting factor for executive dysfunction after DBS (Daniels et al., 2010). Prognostic factors for the development of depressive symptoms after surgery are preoperative persistently increased scores for depression and anxiety measured by the State-Trait Anxiety Inventory (STAI), Beck Depression Inventory (BDI) and Clinical Global Impression - Improvement scale (CGI-I) (Schneider et al., 2010). Therefore depression and other unstable psychiatric conditions require a careful preoperative assessment, a stabilizing treatment and a close-meshed postoperative follow-up (Bronstein et al., 2011).

Concerning time point selection, age, Hoehn and Yahr stage and disease duration are important criteria. There is no clear age cut off, but patients over 70 years have a higher incidence of relevant comorbidities and cognitive impairment resulting in an increased risk for peri- and postoperative complications (Russmann et al., 2004; Lang et al., 2006; Ory-Magne et al., 2007). In the past DBS used to be performed after 11 to 13 years of disease duration in patients with advanced motor-complications (Follett et al., 2010; Williams et al., 2010; Okun et al., 2012). Recent data show high efficacy of DBS concerning an improvement of motor symptoms and quality of life in patients with shorter disease duration and early motor complications (Schüpbach et al., 2013). In this study patients with a mean age of 52 years, a mean PD duration of 7.5 years and motor fluctuations of any severity persisting for 1.7 years were treated with STN-DBS and medication or received best medical treatment. The quality of life - measured by the PD Questionnaire (PDQ-39) - improved by 26% in the stimulation group, whereas it worsened in the medication group. Psychosocial aspects were also analyzed and improved significantly in the stimulation group. The UPDRS motor score improved by 53% in the stimulation group in comparison to 4% in the medication group. These results favor the application of STN-DBS in an earlier stage of PD.


  Target Point Top


Although mechanisms of action of DBS are not completely known up to date, modulation of pathological local (beta) oscillations (Kühn et al., 2008) and modulation of the basal ganglia-cortical network including the hyperdirect pathway seems to play an important role (Gradinaru et al., 2009). The optimal target point for DBS in PD is still a matter of debate. STN-DBS was first performed in 1993 in an advanced PD patient leading to a reduction of motor fluctuations, dyskinesias and dopaminergic medication (Benabid et al., 1994). Since then, several studies have reported an improvement of levodopa responsive symptoms (Limousin et al., 1998; Kleiner-Fisman et al., 2006), motor fluctuations and dyskinesia after STN-DBS (Follett et al., 2010; Okun et al., 2012). STN-DBS is usually performed bilaterally, but unilateral STN-DBS can be effective in highly asymmetric tremor-dominant PD patients (Kumar et al., 1999). Currently, STN-DBS is the most frequently used surgical therapy in PD. However, concerning the improvement of major PD symptoms no significant difference in efficacy has been shown between the STN and the GPi (Weaver et al., 2012), concerning the reduction of dopaminergic medication doses the STN is favorable (Follett et al., 2010; Moro et al., 2010). Furthermore, STN-stimulation requires lower electrical power and results in longer battery life-spans (Volkmann et al., 2001). One advantage of GPi-stimulation is a direct and significant reduction of dyskinesias. Another advantage - in comparison to STN - seems to be a better outcome regarding depression scores (Follett et al., 2010).

In contrast to STN- and GPi-DBS, stimulation of the VIM has no effects on dyskinesia, motor fluctuations, rigidity and bradykinesia but a clear and immediate effect on tremor (Benabid et al., 1996; Ondo et al., 1998). Certainly, VIM-DBS is a therapeutic option for patients with essential tremor and elderly patients with a unilateral tremor-dominant PD.

Another target point is the pedunculopontine nucleus (PPN). DBS of the PPN has been analyzed in small experimental trials. There is evidence revealing that stimulation of the PPN might have positive effects on parkinsonian gait disorder, postural instability and freezing (Pereira et al., 2008). Other reported effects concern a modification of vigilance and quality of sleep (Alessandro et al., 2010). Stimulation of the substantia nigra pars reticulata, partially in combination with the STN, remains experimental. An assumed effect on axial motor symptoms could not yet be proved, but an improvement of freezing of gait has been observed (Weiss et al., 2013).


  Effects on Cognition, Behavior and Mood Top


Changes of neurocognitive function, behavior and mood after DBS in PD have been described in several studies with partially conflicting results. Recent data suggest that the most frequent cognitive side effect, verbal fluency deficits, may be caused by surgical implantation (Okun et al., 2012). In this study, 136 patients underwent DBS device implantation, whereof 101 patients received immediate STN-stimulation and 35 received stimulation after 3 months. Verbal fluency, measured by Delis-Kaplan Executive Function System, degraded similarly in both groups without further aggravation after 3 months. Witt et al. (2013) observed a decline in Mattis Dementia Rating Scale in 7 out of 31 patients with STN-DBS. In comparison to patients without cognitive impairment lead trajectories in these 7 patients harmed a significantly larger volume of the caudate nucleus. However, there is also evidence that stimulation itself has an effect on verbal fluency: Low-frequency (10 Hz) STN-DBS has been shown to improve verbal fluency in comparison to higher stimulation frequencies (130 Hz) and no stimulation (Wojtecki et al., 2006).

Also other factors of stimulation intensity, the localization of the electrode and respective volume of tissue activated impact verbal fluency (Mikos et al., 2011). Regarding speech performance the cognitive (executive-function) aspect has to be clearly distinguished from the voice/articulation/loudness aspect that can be ameliorated or deteriorated by DBS depending on factors such as preoperative speech impairment (Tripoliti et al., 2008; Astrom et al., 2010; Skodda et al., 2012, 2014).

Regarding depression, there are some clinical trials reporting an improvement after STN-DBS (Witt et al., 2008; Okun et al., 2012). One explanation for these results might be an increase in quality of life and reduction of motor symptoms and complications. Others revealed a beneficial effect of GPi-DBS on depression and a worsening effect of STN-DBS (Odekerken et al., 2013). The deteriorating effect of STN-DBS might be caused by a reduction of dopaminergic medication. Apart from that, disease progression has to be taken into account as well (Houeto et al., 2002; Follett et al., 2010). Furthermore, there are reports of a detrimental effect of STN-DBS on fatigue. Okun et al. (2012) described that STN-stimulation rather than the surgical procedure appears to be responsible for this side-effect. In comparison to PD patients with STN-stimulation, their control group received implantation without stimulation for three months. Only stimulation of the STN was associated with fatigue.

Impulse control disorders - typically caused by dopamine agonists - are expected to improve after STN-DBS, mainly due to reduction of dopaminergic medication (Demetriades et al., 2011). Nevertheless, there are studies reporting regression, new development or persistence of impulse control disorders (Smeding et al., 2007; Knobel et al., 2008; Lim et al., 2009).


  Surgical Aspects Top


Target point localization is attained by preoperative imaging and intraoperative neurophysiology. Most frequently, stereotactic magnetic resonance imaging (MRI) is used for target identification and target coordinates are calculated relative to the stereotactic frame placed on the patient's head (Dormont et al., 2010). Further options apart from direct targeting are fusion of MRI and computed tomography (Liu et al., 2001) and stereotactic ventriculography, which is still but rarely used by some teams (Benabid et al., 2009).

Intraoperative neurophysiology consists of intraoperative microelectrode recording (MER) and test stimulation and is used to improve targeting accuracy. For MER multiple trajectories can be recorded simultaneously or successively (Benabid et al., 2009). MER of the STN is characterized by typical activity patterns, proprioceptive responses to passive movements and asymmetrical spikes at high frequency in a bursting manner (Benabid et al., 2009). Some studies suggest a significantly better clinical outcome after microelectrode recording (Mann et al., 2009; Reck et al., 2012), but longer surgery duration has to be taken into account. Intraoperative test stimulation can be performed under both local anesthesia and general anesthesia. However, local anesthesia allows a communication with the patient during the operation and thereby a more precise assessment of side effects and the effect on a variety of symptoms, i.e., rigidity, tremor, coordination and speech. In contrast, general anesthesia is a helpful option to reduce patient's stress and pain (Lefaucheur et al., 2008; Benabid et al., 2009). After identifying the best track the final lead is implanted and subcutaneously connected to the implantable pulse generator (IPG). Typical sites for the IPG are infraclavicular area and lower abdomen. At present, there are rechargeable and non-rechargeable IPGs available. Depending on stimulation parameters - higher stimulation amplitude and pulse width result in shorter battery life spans (Ondo et al., 2007) - non-rechargeable IPGs need to be replaced after approximately 5 years by surgery and are favored for elderly patients and patients with few technical skills.


  Programming Top


The main aim of programming is reducing motor-symptoms and complications and simultaneously avoiding or minimizing side effects of stimulation.

Stimulation devices of the first generation delivered electrical stimulation in a voltage-controlled mode whereas following devices predominantly use the constant-current mode or can be switched into this mode. In comparison to constant-current devices, where the stimulation field is kept stable in size, the stimulation field produced by constant-voltage devices is vulnerable to changing tissue impedances (Lempka et al., 2010; Okun et al., 2012).

The most frequent programming parameters are monopolar stimulation, impulse duration 60-90 μs and frequency 130 Hz (Volkmann et al., 2006). Considering individual symptoms, the amplitude is increased carefully with a simultaneous reduction of dopaminergic medication during several programming sessions. However, the increase of amplitude is limited by stimulation-related side effects such as gait disorder and disequilibrium, dysarthria, oculomotor dysfunction, paraesthesia and increased muscle tone. To decrease these side effects, the stimulation field can be minimized by bipolar stimulation, but the necessity of higher stimulation intensities has to be taken into account (Volkmann et al., 2006). Alternatively, a modification of the stimulation field is achieved by current steering with multiple stimulation sources. Current steering is possible with a new device and allows for an individual shaping of the stimulation field by shifting the current towards another contact (Barbe et al., 2014). Interleaving stimulation is another method to shape the stimulation field by using alternating stimulation of different programs on two electrode contacts. Amongst others, this can be advantageous in patients with motor symptoms that require different contacts or amplitudes for the best therapeutic effect (Wojtecki et al., 2011). Apart from altering the stimulation field, a current pilot study (CUSTOM-DBS) could show that a lower pulse width of 30 μs results in a wider therapeutic spectrum with higher side effect thresholds (Volkmann et al., 2014).

A further stimulation technique under development is directional DBS. In comparison to current devices with omnidirectional stimulation (using one or more contacts of a quadripolar or octopolareelectrode) smaller directional electrodes are used to adapt the stimulated area. Presently available data are based on intraoperative measurements and need to be verified by chronic implantation (Pollo et al., 2014).


  Perspective Top


During the last 25 years, DBS has developed and become an established therapy for PD. Nevertheless, there are ever-growing findings concerning the effectiveness of DBS and the pathomechanisms of side effects resulting in development of new devices and stimulation paradigms. The main aim is a further reduction of side effects and better adaption to individual courses of PD. Inter alia, further development of closed loop stimulation, i.e., adaptive and individual stimulation depending on recorded beta activity of the STN might be an important step for the future (Rosin et al., 2011; Little et al., 2012).[62]

 
  References Top

1.
Alessandro S, Ceravolo R, Brusa L, Pierantozzi M, Costa A, Galati S, Placidi F, Romigi A, Iani C, Marzetti F, Peppe A (2010) Non-motor functions in parkinsonian patients implanted in the pedunculopontine nucleus: focus on sleep and cognitive domains. J Neurol Sci 289:44-48.  Back to cited text no. 1
    
2.
Astrom M, Tripoliti E, Hariz MI, Zrinzo LU, Martinez-Torres I, Limousin P, Wardell K (2010) Patient-specific model-based investigation of speech intelligibility and movement during deep brain stimulation. Stereotact Funct Neurosurg 88:224-233.  Back to cited text no. 2
    
3.
Barbe MT, Maarouf M, Alesch F, Timmermann L (2014) Multiple source current steering--a novel deep brain stimulation concept for customized programming in a Parkinson′s disease patient. Parkinsonism Relat Disord 20:471-473.  Back to cited text no. 3
    
4.
Benabid AL, Chabardes S, Mitrofanis J, Pollak P (2009) Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson′s disease. Lancet Neurol 8:67-81.  Back to cited text no. 4
    
5.
Benabid AL, Pollak P, Gao D, Hoffmann D, Limousin P, Gay E, Payen I, Benazzouz A (1996) Chronic electrical stimulation of the ventralis intermedius nucleus of the thalamus as a treatment of movement disorders. J Neurosurg 84:203-214.  Back to cited text no. 5
    
6.
Benabid AL, Pollak P, Gross C, Hoffmann D, Benazzouz A, Gao DM, Laurent A, Gentil M, Perret J (1994) Acute and long-term effects of subthalamic nucleus stimulation in Parkinson′s disease. Stereotact Funct Neurosurg 62:76-84.  Back to cited text no. 6
    
7.
Bronstein JM, Tagliati M, Alterman RL, Lozano AM, Volkmann J, Stefani A, Horak FB, Okun MS, Foote KD, Krack P, Pahwa R, Henderson JM, Hariz MI, Bakay RA, Rezai A, Marks WJ Jr, Moro E, Vitek JL, Weaver FM, Gross RE, et al. (2011) Deep brain stimulation for Parkinson disease: an expert consensus and review of key issues. Arch Neurol 68:165.  Back to cited text no. 7
    
8.
Castrioto A, Lozano AM, Poon YY, Lang AE, Fallis M, Moro E (2011) Ten-year outcome of subthalamic stimulation in Parkinson disease: a blinded evaluation. Arch Neurol 68:1550-1556.  Back to cited text no. 8
    
9.
Chapuis S, Ouchchane L, Metz O, Gerbaud L, Durif F (2005) Impact of the motor complications of Parkinson′s disease on the quality of life. Mov Disord 20:224-230.  Back to cited text no. 9
    
10.
Charles PD, Van Blercom N, Krack P, Lee SL, Xie J, Besson G, Benabid AL, Pollak P (2002) Predictors of effective bilateral subthalamic nucleus stimulation for PD. Neurology 59:932-934.  Back to cited text no. 10
    
11.
Chaudhuri KR, Rizos A, Sethi KD (2013) Motor and nonmotor complications in Parkinson′s disease: an argument for continuous drug delivery? J Neural Transm 120:1305-1320.  Back to cited text no. 11
    
12.
Damiano AM, McGrath MM, Willian MK, Snyder CF, LeWitt PA, Reyes PF, Richter RR, Means ED (2000) Evaluation of a measurement strategy for Parkinson′s disease: assessing patient health-related quality of life. Qual Life Res 9:87-100.  Back to cited text no. 12
    
13.
Daniels C, Krack P, Volkmann J, Pinsker MO, Krause M, Tronnier V, Kloss M, Schnitzler A, Wojtecki L, Botzel K, Danek A, Hilker R, Sturm V, Kupsch A, Karner E, Deuschl G, Witt K (2010) Risk factors for executive dysfunction after subthalamic nucleus stimulation in Parkinson′s disease. Mov Disord 25:1583-1589.  Back to cited text no. 13
    
14.
Demetriades P, Rickards H, Cavanna AE (2011) Impulse control disorders following deep brain stimulation of the subthalamic nucleus in Parkinson′s disease: clinical aspects. Parkinsons Dis 2011:658415.  Back to cited text no. 14
    
15.
Deuschl G, Schade-Brittinger C, Krack P, Volkmann J, Schäfer H, Bötzel K, Daniels C, Deutschländer A, Dillmann U, Eisner W, Gruber D, Hamel W, Herzog J, Hilker R, Klebe S, Kloss M, Koy J, Krause M, Kupsch A, Lorenz D, et al. (2006) A randomized trial of deep-brain stimulation for Parkinson′s disease. N Engl J Med 355:896-908.  Back to cited text no. 15
    
16.
Dormont D, Seidenwurm D, Galanaud D, Cornu P, Yelnik J, Bardinet E (2010) Neuroimaging and deep brain stimulation. AJNR Am J Neuroradiol 31:15-23.  Back to cited text no. 16
    
17.
Fasano A, Romito LM, Daniele A, Piano C, Zinno M, Bentivoglio AR, Albanese A (2010) Motor and cognitive outcome in patients with Parkinson′s disease 8 years after subthalamic implants. Brain 133:2664-2676.  Back to cited text no. 17
    
18.
Follett KA, Weaver FM, Stern M, Hur K, Harris CL, Luo P, Marks WJ Jr, Rothlind J, Sagher O, Moy C, Pahwa R, Burchiel K, Hogarth P, Lai EC, Duda JE, Holloway K, Samii A, Horn S, Bronstein JM, Stoner G, et al. (2010) Pallidal versus subthalamic deep-brain stimulation for Parkinson′s disease. N Engl J Med 362:2077-2091.  Back to cited text no. 18
    
19.
Houeto JL, Mesnage V, Mallet L, Pillon B, Gargiulo M, du Moncel ST, Bonnet AM, Pidoux B, Dormont D, Cornu P, Agid Y (2002) Behavioural disorders, Parkinson′s disease and subthalamic stimulation. J Neurol Neurosurg Psychiatry 72:701-707.  Back to cited text no. 19
    
20.
Kim HY, Chang WS, Kang DW, Sohn YH, Lee MS, Chang JW (2013) Factors related to outcomes of subthalamic deep brain stimulation in Parkinson′s disease. J Korean Neurosurg Soc 54:118-124.  Back to cited text no. 20
    
21.
Kleiner-Fisman G, Fisman DN, Sime E, Saint-Cyr JA, Lozano AM, Lang AE (2003) Long-term follow up of bilateral deep brain stimulation of the subthalamic nucleus in patients with advanced Parkinson disease. J Neurosurg 99:489-495.  Back to cited text no. 21
    
22.
Kleiner-Fisman G, Herzog J, Fisman DN, Tamma F, Lyons KE, Pahwa R, Lang AE, Deuschl G (2006) Subthalamic nucleus deep brain stimulation: summary and meta-analysis of outcomes. Mov Disord 21 Suppl 14:S290-304.  Back to cited text no. 22
    
23.
Knobel D, Aybek S, Pollo C, Vingerhoets FJ, Berney A (2008) Rapid resolution of dopamine dysregulation syndrome (DDS) after subthalamic DBS for Parkinson disease (PD): a case report. Cogn Behav Neurol 21:187-189.  Back to cited text no. 23
    
24.
Kühn AA, Kempf F, Brucke C, Gaynor Doyle L, Martinez-Torres I, Pogosyan A, Trottenberg T, Kupsch A, Schneider GH, Hariz MI, Vandenberghe W, Nuttin B, Brown P (2008) High-frequency stimulation of the subthalamic nucleus suppresses oscillatory beta activity in patients with Parkinson′s disease in parallel with improvement in motor performance. J Neurosci 28:6165-6173.  Back to cited text no. 24
    
25.
Kumar R, Lozano AM, Sime E, Halket E, Lang AE (1999) Comparative effects of unilateral and bilateral subthalamic nucleus deep brain stimulation. Neurology 53:561-566.  Back to cited text no. 25
    
26.
Lang AE, Houeto JL, Krack P, Kubu C, Lyons KE, Moro E, Ondo W, Pahwa R, Poewe W, Troster AI, Uitti R, Voon V (2006) Deep brain stimulation: preoperative issues. Mov Disord 21 Suppl 14:S171-196.  Back to cited text no. 26
    
27.
Lefaucheur JP, Gurruchaga JM, Pollin B, von Raison F, Mohsen N, Shin M, Menard-Lefaucheur I, Oshino S, Kishima H, Fenelon G, Remy P, Cesaro P, Gabriel I, Brugieres P, Keravel Y, Nguyen JP (2008) Outcome of bilateral subthalamic nucleus stimulation in the treatment of Parkinson′s disease: correlation with intra-operative multi-unit recordings but not with the type of anaesthesia. Eur Neurol 60:186-199.  Back to cited text no. 27
    
28.
Lempka SF, Johnson MD, Miocinovic S, Vitek JL, McIntyre CC (2010) Current-controlled deep brain stimulation reduces in vivo voltage fluctuations observed during voltage-controlled stimulation. Clin Neurophysiol 121:2128-2133.  Back to cited text no. 28
    
29.
Lim SY, O′Sullivan SS, Kotschet K, Gallagher DA, Lacey C, Lawrence AD, Lees AJ, O′Sullivan DJ, Peppard RF, Rodrigues JP, Schrag A, Silberstein P, Tisch S, Evans AH (2009) Dopamine dysregulation syndrome, impulse control disorders and punding after deep brain stimulation surgery for Parkinson′s disease. J Clin Neurosci 16:1148-1152.  Back to cited text no. 29
    
30.
Limousin P, Krack P, Pollak P, Benazzouz A, Ardouin C, Hoffmann D, Benabid AL (1998) Electrical stimulation of the subthalamic nucleus in advanced Parkinson′s disease. N Engl J Med 339:1105-1111.  Back to cited text no. 30
    
31.
Little S, Pogosyan A, Kühn AA, Brown P (2012) beta band stability over time correlates with Parkinsonian rigidity and bradykinesia. Exp Neurol 236:383-388.  Back to cited text no. 31
    
32.
Liu X, Rowe J, Nandi D, Hayward G, Parkin S, Stein J, Aziz T (2001) Localisation of the subthalamic nucleus using Radionics Image Fusion and Stereoplan combined with field potential recording. A technical note. Stereotact Funct Neurosurg 76:63-73.  Back to cited text no. 32
    
33.
Mann JM, Foote KD, Garvan CW, Fernandez HH, Jacobson CEt, Rodriguez RL, Haq IU, Siddiqui MS, Malaty IA, Morishita T, Hass CJ, Okun MS (2009) Brain penetration effects of microelectrodes and DBS leads in STN or GPi. J Neurol Neurosurg Psychiatry 80:794-797.  Back to cited text no. 33
    
34.
Mikos A, Bowers D, Noecker AM, McIntyre CC, Won M, Chaturvedi A, Foote KD, Okun MS (2011) Patient-specific analysis of the relationship between the volume of tissue activated during DBS and verbal fluency. Neuroimage 54:S238-246.  Back to cited text no. 34
    
35.
Moro E, Lozano AM, Pollak P, Agid Y, Rehncrona S, Volkmann J, Kulisevsky J, Obeso JA, Albanese A, Hariz MI, Quinn NP, Speelman JD, Benabid AL, Fraix V, Mendes A, Welter ML, Houeto JL, Cornu P, Dormont D, Tornqvist AL, et al. (2010) Long-term results of a multicenter study on subthalamic and pallidal stimulation in Parkinson′s disease. Mov Disord 25:578-586.  Back to cited text no. 35
    
36.
Odekerken VJ, van Laar T, Staal MJ, Mosch A, Hoffmann CF, Nijssen PC, Beute GN, van Vugt JP, Lenders MW, Contarino MF, Mink MS, Bour LJ, van den Munckhof P, Schmand BA, de Haan RJ, Schuurman PR, de Bie RM (2013) Subthalamic nucleus versus globus pallidus bilateral deep brain stimulation for advanced Parkinson′s disease (NSTAPS study): a randomised controlled trial. Lancet Neurol 12:37-44.  Back to cited text no. 36
    
37.
Okun MS, Gallo BV, Mandybur G, Jagid J, Foote KD, Revilla FJ, Alterman R, Jankovic J, Simpson R, Junn F, Verhagen L, Arle JE, Ford B, Goodman RR, Stewart RM, Horn S, Baltuch GH, Kopell BH, Marshall F, Peichel D, et al. (2012) Subthalamic deep brain stimulation with a constant-current device in Parkinson′s disease: an open-label randomised controlled trial. Lancet Neurol 11:140-149.  Back to cited text no. 37
    
38.
Ondo W, Jankovic J, Schwartz K, Almaguer M, Simpson RK (1998) Unilateral thalamic deep brain stimulation for refractory essential tremor and Parkinson′s disease tremor. Neurology 51:1063-1069.  Back to cited text no. 38
    
39.
Ondo WG, Meilak C, Vuong KD (2007) Predictors of battery life for the Activa Soletra 7426 Neurostimulator. Parkinsonism Relat Disord 13:240-242.  Back to cited text no. 39
    
40.
Ory-Magne F, Brefel-Courbon C, Simonetta-Moreau M, Fabre N, Lotterie JA, Chaynes P, Berry I, Lazorthes Y, Rascol O (2007) Does ageing influence deep brain stimulation outcomes in Parkinson′s disease? Mov Disord 22:1457-1463.  Back to cited text no. 40
    
41.
Pereira EA, Muthusamy KA, De Pennington N, Joint CA, Aziz TZ (2008) Deep brain stimulation of the pedunculopontine nucleus in Parkinson′s disease. Preliminary experience at Oxford. Br J Neurosurg 22 Suppl 1:S41-44.  Back to cited text no. 41
    
42.
Pollo C, Kaelin-Lang A, Oertel MF, Stieglitz L, Taub E, Fuhr P, Lozano AM, Raabe A, Schupbach M (2014) Directional deep brain stimulation: an intraoperative double-blind pilot study. Brain 137:2015-2026.  Back to cited text no. 42
    
43.
Reck C, Maarouf M, Wojtecki L, Groiss SJ, Florin E, Sturm V, Fink GR, Schnitzler A, Timmermann L (2012) Clinical outcome of subthalamic stimulation in Parkinson′s disease is improved by intraoperative multiple trajectories microelectrode recording. J Neurol Surg A Cent Eur Neurosurg 73:377-386.  Back to cited text no. 43
    
44.
Rosin B, Slovik M, Mitelman R, Rivlin-Etzion M, Haber SN, Israel Z, Vaadia E, Bergman H (2011) Closed-loop deep brain stimulation is superior in ameliorating parkinsonism. Neuron 72:370-384.  Back to cited text no. 44
    
45.
Russmann H, Ghika J, Villemure JG, Robert B, Bogousslavsky J, Burkhard PR, Vingerhoets FJ (2004) Subthalamic nucleus deep brain stimulation in Parkinson disease patients over age 70 years. Neurology 63:1952-1954.  Back to cited text no. 45
    
46.
Schneider F, Reske M, Finkelmeyer A, Wojtecki L, Timmermann L, Brosig T, Backes V, Amir-Manavi A, Sturm V, Habel U, Schnitzler A (2010) Predicting acute affective symptoms after deep brain stimulation surgery in Parkinson′s disease. Stereotact Funct Neurosurg 88:367-373.  Back to cited text no. 46
    
47.
Schüpbach WM, Rau J, Knudsen K, Volkmann J, Krack P, Timmermann L, Hälbig TD, Hesekamp H, Navarro SM, Meier N, Falk D, Mehdorn M, Paschen S, Maarouf M, Barbe MT, Fink GR, Kupsch A, Gruber D, Schneider GH, Seigneuret E, et al. (2013) Neurostimulation for Parkinson′s disease with early motor complications. N Engl J Med 368:610-622.  Back to cited text no. 47
    
48.
Skodda S, Schlegel U, Südmeyer M, Schnitzler A, Wojtecki L (2012) Effects of levodopa and deep brain stimulation on motor speech performance in Parkinson′s disease. Basal Ganglia 1:49-54.  Back to cited text no. 48
    
49.
Skodda S, Gronheit W, Schlegel U, Sudmeyer M, Schnitzler A, Wojtecki L (2014) Effect of subthalamic stimulation on voice and speech in Parkinson′s disease: for the better or worse? Front Neurol 4:218.  Back to cited text no. 49
    
50.
Smeding HM, Goudriaan AE, Foncke EM, Schuurman PR, Speelman JD, Schmand B (2007) Pathological gambling after bilateral subthalamic nucleus stimulation in Parkinson disease. J Neurol Neurosurg Psychiatry 78:517-519.  Back to cited text no. 50
    
51.
Tripoliti E, Zrinzo L, Martinez-Torres I, Tisch S, Frost E, Borrell E, Hariz MI, Limousin P (2008) Effects of contact location and voltage amplitude on speech and movement in bilateral subthalamic nucleus deep brain stimulation. Mov Disord 23:2377-2383.  Back to cited text no. 51
    
52.
Volkmann J, Moro E, Pahwa R (2006) Basic algorithms for the programming of deep brain stimulation in Parkinson′s disease. Mov Disord 21 Suppl 14:S284-289.  Back to cited text no. 52
    
53.
Volkmann J, Allert N, Voges J, Weiss PH, Freund HJ, Sturm V (2001) Safety and efficacy of pallidal or subthalamic nucleus stimulation in advanced PD. Neurology 56:548-551.  Back to cited text no. 53
    
54.
Volkmann J, Reich M, Sawalhe AD, Timmermann L, Barbe M, Kühn AA, Hübl J, Schnitzler A, Groiss SJ, Moldovan A, Steinke K, Lin S, Manola L, Carcieri S (2014) 18th International Congress of Parkinson′s Disease and Movement Disorders. Late-Breaking Abstracts, MDS Study Group Abstracts and Guided Poster Tour Information. Deep Brain Stimulation at short pulse width results in superior therapeutic windows for treatment of Parkinson′s Disease: a randomized, controlled, double-blind neurostimulation trial (CUSTOM-DBS) 12-13, :12-13. Retrieved from www.mdscongress2014.org/MDS-Files/pdfs/Late-BreakingStudyGroupAbstractsPublication.pdf.  Back to cited text no. 54
    
55.
Weaver FM, Follett K, Stern M, Hur K, Harris C, Marks WJ Jr, Rothlind J, Sagher O, Reda D, Moy CS, Pahwa R, Burchiel K, Hogarth P, Lai EC, Duda JE, Holloway K, Samii A, Horn S, Bronstein J, Stoner G, et al. (2009) Bilateral deep brain stimulation vs best medical therapy for patients with advanced Parkinson disease: a randomized controlled trial. JAMA 301:63-73.  Back to cited text no. 55
    
56.
Weaver FM, Follett KA, Stern M, Luo P, Harris CL, Hur K, Marks WJ Jr, Rothlind J, Sagher O, Moy C, Pahwa R, Burchiel K, Hogarth P, Lai EC, Duda JE, Holloway K, Samii A, Horn S, Bronstein JM, Stoner G, et al. (2012) Randomized trial of deep brain stimulation for Parkinson disease: thirty-six-month outcomes. Neurology 79:55-65.  Back to cited text no. 56
    
57.
Weiss D, Walach M, Meisner C, Fritz M, Scholten M, Breit S, Plewnia C, Bender B, Gharabaghi A, Wachter T, Kruger R (2013) Nigral stimulation for resistant axial motor impairment in Parkinson′s disease? A randomized controlled trial. Brain 136:2098-2108.  Back to cited text no. 57
    
58.
Williams A, Gill S, Varma T, Jenkinson C, Quinn N, Mitchell R, Scott R, Ives N, Rick C, Daniels J, Patel S, Wheatley K, Group PSC (2010) Deep brain stimulation plus best medical therapy versus best medical therapy alone for advanced Parkinson′s disease (PD SURG trial): a randomised, open-label trial. Lancet Neurol 9:581-591.  Back to cited text no. 58
    
59.
Witt K, Granert O, Daniels C, Volkmann J, Falk D, van Eimeren T, Deuschl G (2013) Relation of lead trajectory and electrode position to neuropsychological outcomes of subthalamic neurostimulation in Parkinson′s disease: results from a randomized trial. Brain 136:2109-2119.  Back to cited text no. 59
    
60.
Witt K, Daniels C, Reiff J, Krack P, Volkmann J, Pinsker MO, Krause M, Tronnier V, Kloss M, Schnitzler A, Wojtecki L, Bötzel K, Danek A, Hilker R, Sturm V, Kupsch A, Karner E, Deuschl G (2008) Neuropsychological and psychiatric changes after deep brain stimulation for Parkinson′s disease: a randomised, multicentre study. Lancet Neurol 7:605-614.  Back to cited text no. 60
    
61.
Wojtecki L, Vesper J, Schnitzler A (2011) Interleaving programming of subthalamic deep brain stimulation to reduce side effects with good motor outcome in a patient with Parkinson′s disease. Parkinsonism Relat Disord 17:293-294.  Back to cited text no. 61
    
62.
Wojtecki L, Timmermann L, Jörgens S, Südmeyer M, Maarouf M, Treuer H, Gross J, Lehrke R, Koulousakis A, Voges J, Sturm V, Schnitzler A (2006) Frequency-dependent reciprocal modulation of verbal fluency and motor functions in subthalamic deep brain stimulation. Arch Neurol 63:1273-1276.  Back to cited text no. 62
    



 
 
    Tables

  [Table 1]


This article has been cited by
1 The Interaction of Curcumin and Rosmarinic Acid with Non-Amyloid-Component Domain of Alpha-Synuclein: A Molecular Dynamics Study
Mahrokh Rezaei Kamelabad,Jaber Jahanbin Sardroodi,Alireza Rastkar Ebrahimzadeh
ChemistrySelect. 2020; 5(11): 3312
[Pubmed] | [DOI]
2 The management of risk and investment in cell therapy process development: a case study for neurodegenerative disease
Sujith Sebastian,Paul Hourd,Amit Chandra,David J Williams,Nicholas Medcalf
Regenerative Medicine. 2019; 14(5): 465
[Pubmed] | [DOI]
3 A Non-Invasive Medical Device for Parkinson’s Patients with Episodes of Freezing of Gait
Catalina Punin,Boris Barzallo,Roger Clotet,Alexander Bermeo,Marco Bravo,Juan Bermeo,Carlos Llumiguano
Sensors. 2019; 19(3): 737
[Pubmed] | [DOI]
4 Beyond Emotions: Oscillations of the Amygdala and Their Implications for Electrical Neuromodulation
Lisa-Maria Schönfeld,Lars Wojtecki
Frontiers in Neuroscience. 2019; 13
[Pubmed] | [DOI]
5 Perspectives on the Earlier Use of Deep Brain Stimulation for Parkinson Disease from a Qualitative Study of U.S. Clinicians
Laura Y. Cabrera,Harini Sarva,Christos Sidiropoulos
World Neurosurgery. 2019;
[Pubmed] | [DOI]
6 Voltage adjustment improves rigidity and tremor in Parkinsonæs disease patients receiving deep brain stimulation
Shao-hua Xu,Chao Yang,Wen-biao Xian,Jing Gu,Jin-long Liu,Lu-lu Jiang,Jing Ye,Yan-mei Liu,Qi-yu Guo,Yi-fan Zheng,Lei Wu,Wan-ru Chen,Zhong Pei,Ling Chen
Neural Regeneration Research. 2018; 13(2): 347
[Pubmed] | [DOI]
7 Quantitative EEG reflects Non-Dopaminergic Disease Severity in Parkinson’s Disease
V.J. Geraedts,J. Marinus,A.A. Gouw,A. Mosch,C.J. Stam,J.J. van Hilten,M.F. Contarino,M.R. Tannemaat
Clinical Neurophysiology. 2018;
[Pubmed] | [DOI]
8 Neurotrophin signalling: novel insights into mechanisms and pathophysiology
Mariela Mitre,Abigail Mariga,Moses V. Chao
Clinical Science. 2017; 131(1): 13
[Pubmed] | [DOI]
9 Intraoperative Localization of the Subthalamic Nucleus Using Long-Latency Somatosensory Evoked Potentials
Carlos Trenado,Saskia Elben,Lena Friggemann,Stefan Jun Groiss,Jan Vesper,Alfons Schnitzler,Lars Wojtecki
Neuromodulation: Technology at the Neural Interface. 2017;
[Pubmed] | [DOI]
10 Vocalic transitions as markers of speech acoustic changes with STN-DBS in Parkinson’s Disease
Vincent Martel-Sauvageau,Kris Tjaden
Journal of Communication Disorders. 2017; 70: 1
[Pubmed] | [DOI]
11 Selection of the Optimal Algorithm for Real-Time Estimation of Beta Band Power during DBS Surgeries in Patients with Parkinson’s Disease
Ángeles Tepper,Mauricio Carlos Henrich,Luciano Schiaffino,Alfredo Rosado Muñoz,Antonio Gutiérrez,Juan Guerrero Martínez
Computational Intelligence and Neuroscience. 2017; 2017: 1
[Pubmed] | [DOI]
12 Different outcomes of phonemic verbal fluency in Parkinson’s disease patients with subthalamic nucleus deep brain stimulation
Aline Juliane Romann,Bárbara Costa Beber,Maira Rozenfeld Olchik,Carlos R M. Rieder
Arquivos de Neuro-Psiquiatria. 2017; 75(4): 216
[Pubmed] | [DOI]
13 Human subthalamic nucleus – Automatic auditory change detection as a basis for action selection
Marcus Heldmann,Thomas F. Münte,Lejla Paracka,Frederike Beyer,Norbert Brüggemann,Assel Saryyeva,Dirk Rasche,Joachim K. Krauss,Volker M. Tronnier
Neuroscience. 2017; 355: 141
[Pubmed] | [DOI]
14 Development and antiparkinsonian activity of VU0418506, a selective positive allosteric modulator of metabotropic glutamate receptor 4 homomers without activity at mGlu2/4 heteromers
Colleen M Niswender,Carrie K. Jones,Xin Lin,Michael Bubser,Analisa Thompson Gray,Anna L. Blobaum,Darren W. Engers,Alice L Rodriguez,Matthew T. Loch,John Scott Daniels,Craig W Lindsley,Corey R. Hopkins,Jonathan A. Javitch,P. Jeffrey Conn
ACS Chemical Neuroscience. 2016;
[Pubmed] | [DOI]
15 Disease-Toxicant Interactions in Parkinson’s Disease Neuropathology
Gunnar F. Kwakye,Rachael A. McMinimy,Michael Aschner
Neurochemical Research. 2016;
[Pubmed] | [DOI]



 

Top
 
 
  Search
 
Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Access Statistics
Email Alert *
Add to My List *
* Registration required (free)

 
  In this article
Abstract
Introduction
Clinical Outcome
Patient Selection
Target Point
Effects on Cogni...
Surgical Aspects
Programming
Perspective
References
Article Tables

 Article Access Statistics
    Viewed3620    
    Printed28    
    Emailed1    
    PDF Downloaded816    
    Comments [Add]    
    Cited by others 15    

Recommend this journal


[TAG2]
[TAG3]
[TAG4]