• Users Online: 2421
  • Home
  • Print this page
  • Email this page
Year : 2018  |  Volume : 13  |  Issue : 7  |  Page : 1159-1169

Molecular mechanism of noradrenaline during the stress-induced major depressive disorder

1 Department of Pharmacology, School of Pharmaceutical Science, Ohu University, Fukushima, Japan
2 Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA

Correspondence Address:
Manoj Kumar Jaiswal
Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY
Login to access the Email id

Source of Support: None, Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest

DOI: 10.4103/1673-5374.235019

Rights and Permissions

Chronic stress-induced depression is a common hallmark of many psychiatric disorders with high morbidity rate. Stress-induced dysregulation of noradrenergic system has been implicated in the pathogenesis of depression. Lack of monoamine in the brain has been believed to be the main causative factor behind pathophysiology of major depressive disorder (MDD) and several antidepressants functions by increasing the monoamine level at the synapses in the brain. However, it is undetermined whether the noradrenergic receptor stimulation is critical for the therapeutic effect of antidepressant. Contrary to noradrenergic receptor stimulation, it has been suggested that the desensitization of β-adrenoceptor is involved in the therapeutic effect of antidepressant. In addition, enhanced noradrenaline (NA) release is central response to stress and thought to be a risk factor for the development of MDD. Moreover, fast acting antidepressant suppresses the hyperactivation of noradrenergic neurons in locus coeruleus (LC). However, it is unclear how they alter the firing activity of LC neurons. These inconsistent reports about antidepressant effect of NA-reuptake inhibitors (NRIs) and enhanced release of NA as a stress response complicate our understanding about the pathophysiology of MDD. In this review, we will discuss the role of NA in pathophysiology of stress and the mechanism of therapeutic effect of NA in MDD. We will also discuss the possible contributions of each subtype of noradrenergic receptors on LC neurons, hypothalamic-pituitary-adrenal axis (HPA-axis) and brain derived neurotrophic factor-induced hippocampal neurogenesis during stress and therapeutic effect of NRIs in MDD.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded1113    
    Comments [Add]    
    Cited by others 27    

Recommend this journal